Skip to content

Commit

Permalink
Finetuned yolov5 for trucks (#476)
Browse files Browse the repository at this point in the history
* Yolov5 learner truck updates

* Yolov5 create an inference demo for the finetuned model

* Update object-detection-2d-yolov5.md

yolov5_learner.py documentation for download method

* Update object-detection-2d-yolov5.md

* Refactor yolov5_learner.py download process in constructor for efficiency

* Update docs/reference/object-detection-2d-yolov5.md

Co-authored-by: Nikolaos Passalis <passalis@users.noreply.github.com>

---------

Co-authored-by: Nikolaos Passalis <passalis@users.noreply.github.com>
Co-authored-by: Olivier Michel <Olivier.Michel@cyberbotics.com>
  • Loading branch information
3 people authored Nov 15, 2023
1 parent 06f9afc commit 503a646
Show file tree
Hide file tree
Showing 3 changed files with 140 additions and 7 deletions.
21 changes: 21 additions & 0 deletions docs/reference/object-detection-2d-yolov5.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,27 @@ Parameters:
- **size**: *int, default=640*\
Size of image for inference.
The image is resized to this in both sides before being fed to the model.

#### `YOLOv5DetectorLearner.download`
```python
YOLOv5DetectorLearner.download(self, path, mode, verbose, url, model_name, img_name)
```

Downloads the pretrained weights of a YOLOv5s model fine-tuned for truck detection, along with sample truck images for inference, stored in .pt and image files respectively.

Parameters:

- **path**: *str, default=None*\
Specifies the folder where data will be downloaded. If *None*, the *self.temp_path* directory is used instead.
- **mode**: *{'pretrained', 'images', 'test_data'}, default='pretrained'*\
If *'pretrained'*, downloads a pretrained detector model. If *'images'*, downloads an image to perform inference on. If
*'test_data'* downloads a dummy dataset for testing purposes.
- **verbose**: *bool default=True*\
If True, enables maximum verbosity.
- **url**: *str, default=OpenDR FTP URL*\
URL of the FTP server.
- **model_name**: name of model ftp server, *default = 'yolov5_finetuned_in_trucks.pt'.*\
- **image_name**: name of image in ftp server, *default = 'truck1.png'.*\

#### Examples

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# Copyright 2020-2023 OpenDR European Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
from opendr.engine.data import Image
from opendr.perception.object_detection_2d import YOLOv5DetectorLearner
from opendr.perception.object_detection_2d import draw_bounding_boxes


if __name__ == '__main__':
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", help="Model name or path", type=str, default='yolov5s_trucks')
parser.add_argument("--device", help="Device to use (cpu, cuda)", type=str, default="cuda", choices=["cuda", "cpu"])
parser.add_argument("--model_dir", help="Model directory", type=str, default="./yolov5s_finetuned_in_trucks.pt")
args = parser.parse_args()

# Initialize the YOLOv5 detector with the given model and device
yolo = YOLOv5DetectorLearner(model_name=args.model_name, device=args.device, path=args.model_dir)
yolo.download(".", mode="images", verbose=True, img_name="truck4.jpg")
yolo.download(".", mode="images", verbose=True, img_name="truck7.jpg")

im1 = Image.open('truck4.jpg')
im2 = Image.open('truck7.jpg')

results = yolo.infer(im1)
draw_bounding_boxes(im1.opencv(), results, yolo.classes, show=True, line_thickness=3)

results = yolo.infer(im2)
draw_bounding_boxes(im2, results, yolo.classes, show=True, line_thickness=3)
85 changes: 78 additions & 7 deletions src/opendr/perception/object_detection_2d/yolov5/yolov5_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# General imports
import os
from urllib.request import urlretrieve

# OpenDR engine imports
from opendr.engine.learners import Learner
from opendr.engine.data import Image
from opendr.engine.target import BoundingBox, BoundingBoxList
from opendr.engine.constants import OPENDR_SERVER_URL


# yolov5 imports
import torch
Expand All @@ -28,19 +33,31 @@ class YOLOv5DetectorLearner(Learner):

def __init__(self, model_name, path=None, device='cuda', temp_path='.', force_reload=False):
super(YOLOv5DetectorLearner, self).__init__(device=device, temp_path=temp_path)
if model_name not in self.available_models:
model_name = 'yolov5s'
print('Unrecognized model name, defaulting to "yolov5s"')
self.device = device
self.model_directory = temp_path if path is None else path
self.model_name = model_name

default_dir = torch.hub.get_dir()
torch.hub.set_dir(temp_path)

if path is None:
self.model = torch.hub.load('ultralytics/yolov5:master', 'custom', f'{temp_path}/{model_name}',
force_reload=force_reload)
else:
# Downloading and loading the fine-tuned yolov5s model in trucks
if model_name == 'yolov5s_trucks':
self.download(path='./', mode="pretrained", verbose=True)
self.model = torch.hub.load('ultralytics/yolov5:master', 'custom', path=path,
force_reload=force_reload)
# Getting a generic model
else:
if model_name not in self.available_models:
model_name = 'yolov5s'
print('Unrecognized model name, defaulting to "yolov5s"')

if path is None:
self.model = torch.hub.load('ultralytics/yolov5:master', 'custom',
f'{temp_path}/{model_name}',
force_reload=force_reload)
else:
self.model = torch.hub.load('ultralytics/yolov5:master', 'custom', path=path,
force_reload=force_reload)
torch.hub.set_dir(default_dir)

self.model.to(device)
Expand Down Expand Up @@ -86,3 +103,57 @@ def load(self):
def save(self):
"""This method is not used in this implementation."""
return NotImplementedError

def download(self, path=None, mode="pretrained", verbose=False,
url=OPENDR_SERVER_URL + "/perception/object_detection_2d/yolov5/",
model_name='yolov5s_finetuned_in_trucks.pt', img_name='truck1.jpg'):
"""
Downloads all files necessary for inference, evaluation and training. Valid mode options are: ["pretrained",
"images", "test_data"].
:param path: folder to which files will be downloaded, if None self.temp_path will be used
:type path: str, optional
:param mode: one of: ["pretrained", "images", "test_data"], where "pretrained" downloads a pretrained
network depending on the self.backbone type, "images" downloads example inference data, "backbone" downloads a
pretrained resnet backbone for training, and "annotations" downloads additional annotation files for training
:type mode: str, optional
:param verbose: if True, additional information is printed on stdout
:type verbose: bool, optional
:param model_name: the name of the model file to download (e.g., 'yolov5s.pt')
:type model_name: str, optional
:param url: URL to file location on FTP server
:type url: str, optional
"""
valid_modes = ["pretrained", "images", "test_data"]
if mode not in valid_modes:
raise ValueError("Invalid mode. Currently, only 'pretrained' mode is supported.")

if path is None:
path = self.temp_path

if not os.path.exists(path):
os.makedirs(path)

if mode == "pretrained":
model_path = os.path.join(path, model_name)
if not os.path.exists(model_path):
if verbose:
print("Downloading pretrained model...")
file_url = os.path.join(url, "pretrained", model_name)
urlretrieve(file_url, model_path)
if verbose:
print(f"Downloaded model to {model_path}.")
else:
if verbose:
print("Model already exists.")
elif mode == "images":
image_path = os.path.join(path, img_name)
if not os.path.exists(image_path):
if verbose:
print("Downloading example image...")
file_url = os.path.join(url, "images", img_name)
urlretrieve(file_url, image_path)
if verbose:
print(f"Downloaded example image to {image_path}.")
else:
if verbose:
print("Example image already exists.")

0 comments on commit 503a646

Please sign in to comment.