Skip to content

Conversation

@ash211
Copy link

@ash211 ash211 commented Aug 17, 2017

Fixes #244

Marcelo Vanzin and others added 30 commits July 14, 2017 14:32
When localizing the gateway config files in a YARN application, avoid
overwriting final configs by distributing the gateway files to a separate
directory, and explicitly loading them into the Hadoop config, instead
of placing those files before the cluster's files in the classpath.

This is done by saving the gateway's config to a separate XML file
distributed with the rest of the Spark app's config, and loading that
file when creating a new config through `YarnSparkHadoopUtil`.

Tested with existing unit tests, and by verifying the behavior in a YARN
cluster (final values are not overridden, non-final values are).

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes apache#18370 from vanzin/SPARK-9825.
…e and sink using it

## What changes were proposed in this pull request?

Add the query id as a local property to allow source and sink using it.

## How was this patch tested?

The new unit test.

Author: Shixiong Zhu <shixiong@databricks.com>

Closes apache#18638 from zsxwing/SPARK-21421.
…rison

## What changes were proposed in this pull request?

This PR fixes a wrong comparison for `BinaryType`. This PR enables unsigned comparison and unsigned prefix generation for an array for `BinaryType`. Previous implementations uses signed operations.

## How was this patch tested?

Added a test suite in `OrderingSuite`.

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes apache#18571 from kiszk/SPARK-21344.
…-guide redirector

## What changes were proposed in this pull request?

Update internal references from programming-guide to rdd-programming-guide

See apache/spark-website@5ddf243 and apache#18485 (comment)

Let's keep the redirector even if it's problematic to build, but not rely on it internally.

## How was this patch tested?

(Doc build)

Author: Sean Owen <sowen@cloudera.com>

Closes apache#18625 from srowen/SPARK-21267.2.
…or both features and label column.

## What changes were proposed in this pull request?
```RFormula``` should handle invalid for both features and label column.
apache#18496 only handle invalid values in features column. This PR add handling invalid values for label column and test cases.

## How was this patch tested?
Add test cases.

Author: Yanbo Liang <ybliang8@gmail.com>

Closes apache#18613 from yanboliang/spark-20307.
…e Scala 2.10

## What changes were proposed in this pull request?

Follow up to a few comments on apache#17150 (comment) that couldn't be addressed before it was merged.

## How was this patch tested?

Existing tests.

Author: Sean Owen <sowen@cloudera.com>

Closes apache#18646 from srowen/SPARK-19810.2.
…han one sources

### What changes were proposed in this pull request?
The build-in functions `input_file_name`, `input_file_block_start`, `input_file_block_length` do not support more than one sources, like what Hive does. Currently, Spark does not block it and the outputs are ambiguous/non-deterministic. It could be from any side.

```
hive> select *, INPUT__FILE__NAME FROM t1, t2;
FAILED: SemanticException Column INPUT__FILE__NAME Found in more than One Tables/Subqueries
```

This PR blocks it and issues an error.

### How was this patch tested?
Added a test case

Author: gatorsmile <gatorsmile@gmail.com>

Closes apache#18580 from gatorsmile/inputFileName.
…unction support in UDF in PySpark

## What changes were proposed in this pull request?

This PR proposes to avoid `__name__` in the tuple naming the attributes assigned directly from the wrapped function to the wrapper function, and use `self._name` (`func.__name__` or `obj.__class__.name__`).

After SPARK-19161, we happened to break callable objects as UDFs in Python as below:

```python
from pyspark.sql import functions

class F(object):
    def __call__(self, x):
        return x

foo = F()
udf = functions.udf(foo)
```

```
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File ".../spark/python/pyspark/sql/functions.py", line 2142, in udf
    return _udf(f=f, returnType=returnType)
  File ".../spark/python/pyspark/sql/functions.py", line 2133, in _udf
    return udf_obj._wrapped()
  File ".../spark/python/pyspark/sql/functions.py", line 2090, in _wrapped
    functools.wraps(self.func)
  File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/functools.py", line 33, in update_wrapper
    setattr(wrapper, attr, getattr(wrapped, attr))
AttributeError: F instance has no attribute '__name__'
```

This worked in Spark 2.1:

```python
from pyspark.sql import functions

class F(object):
    def __call__(self, x):
        return x

foo = F()
udf = functions.udf(foo)
spark.range(1).select(udf("id")).show()
```

```
+-----+
|F(id)|
+-----+
|    0|
+-----+
```

**After**

```python
from pyspark.sql import functions

class F(object):
    def __call__(self, x):
        return x

foo = F()
udf = functions.udf(foo)
spark.range(1).select(udf("id")).show()
```

```
+-----+
|F(id)|
+-----+
|    0|
+-----+
```

_In addition, we also happened to break partial functions as below_:

```python
from pyspark.sql import functions
from functools import partial

partial_func = partial(lambda x: x, x=1)
udf = functions.udf(partial_func)
```

```
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File ".../spark/python/pyspark/sql/functions.py", line 2154, in udf
    return _udf(f=f, returnType=returnType)
  File ".../spark/python/pyspark/sql/functions.py", line 2145, in _udf
    return udf_obj._wrapped()
  File ".../spark/python/pyspark/sql/functions.py", line 2099, in _wrapped
    functools.wraps(self.func, assigned=assignments)
  File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/functools.py", line 33, in update_wrapper
    setattr(wrapper, attr, getattr(wrapped, attr))
AttributeError: 'functools.partial' object has no attribute '__module__'
```

This worked in Spark 2.1:

```python
from pyspark.sql import functions
from functools import partial

partial_func = partial(lambda x: x, x=1)
udf = functions.udf(partial_func)
spark.range(1).select(udf()).show()
```

```
+---------+
|partial()|
+---------+
|        1|
+---------+
```

**After**

```python
from pyspark.sql import functions
from functools import partial

partial_func = partial(lambda x: x, x=1)
udf = functions.udf(partial_func)
spark.range(1).select(udf()).show()
```

```
+---------+
|partial()|
+---------+
|        1|
+---------+
```

## How was this patch tested?

Unit tests in `python/pyspark/sql/tests.py` and manual tests.

Author: hyukjinkwon <gurwls223@gmail.com>

Closes apache#18615 from HyukjinKwon/callable-object.
…ted Estimators such as OneVsRest

## What changes were proposed in this pull request?
Added functionality for CrossValidator and TrainValidationSplit to persist nested estimators such as OneVsRest. Also added CrossValidator and TrainValidation split persistence to pyspark.

## How was this patch tested?
Performed both cross validation and train validation split with a one vs. rest estimator and tested read/write functionality of the estimator parameter maps required by these meta-algorithms.

Author: Ajay Saini <ajays725@gmail.com>

Closes apache#18428 from ajaysaini725/MetaAlgorithmPersistNestedEstimators.
## What changes were proposed in this pull request?

The current code is very verbose on shutdown.

The changes I propose is to change the log level when the driver is shutting down and the RPC connections are closed (RpcEnvStoppedException).

## How was this patch tested?

Tested with word count(deploy-mode = cluster, master = yarn, num-executors = 4) with 300GB of data.

Author: John Lee <jlee2@yahoo-inc.com>

Closes apache#18547 from yoonlee95/SPARK-21321.
…e in AM's credential renwer

## What changes were proposed in this pull request?

In this issue we have a long running Spark application with secure HBase, which requires `HBaseCredentialProvider` to get tokens periodically, we specify HBase related jars with `--packages`, but these dependencies are not added into AM classpath, so when `HBaseCredentialProvider` tries to initialize HBase connections to get tokens, it will be failed.

Currently because jars specified with `--jars` or `--packages` are not added into AM classpath, the only way to extend AM classpath is to use "spark.driver.extraClassPath" which supposed to be used in yarn cluster mode.

So in this fix, we proposed to use/reuse a classloader for `AMCredentialRenewer` to acquire new tokens.

Also in this patch, we fixed AM cannot get tokens from HDFS issue, it is because FileSystem is gotten before kerberos logged, so using this FS to get tokens will throw exception.

## How was this patch tested?

Manual verification.

Author: jerryshao <sshao@hortonworks.com>

Closes apache#18616 from jerryshao/SPARK-21377.
…progress updates

## What changes were proposed in this pull request?

Currently, there is no tracking of memory usage of state stores. This JIRA is to expose that through SQL metrics and StreamingQueryProgress.

Additionally, added the ability to expose implementation-specific metrics through the StateStore APIs to the SQLMetrics.

## How was this patch tested?
Added unit tests.

Author: Tathagata Das <tathagata.das1565@gmail.com>

Closes apache#18629 from tdas/SPARK-21409.
### What changes were proposed in this pull request?
The current SQLConf messages of `spark.sql.hive.convertMetastoreParquet` and `spark.sql.hive.convertMetastoreOrc` are not very clear to end users. This PR is to improve them.

### How was this patch tested?
N/A

Author: gatorsmile <gatorsmile@gmail.com>

Closes apache#18657 from gatorsmile/msgUpdates.
…D.count() is less than `partitions`

## What changes were proposed in this pull request?

Fix a bug in RangePartitioner:
In RangePartitioner(partitions: Int, rdd: RDD[]), RangePartitioner.numPartitions is wrong if the number of elements in RDD (rdd.count()) is less than number of partitions (partitions in constructor).

## How was this patch tested?

test as described in [SPARK-SPARK-21410](https://issues.apache.org/jira/browse/SPARK-21410
)

Please review http://spark.apache.org/contributing.html before opening a pull request.

Author: Zhang A Peng <zhangap@cn.ibm.com>

Closes apache#18631 from apapi/fixRangePartitioner.numPartitions.
…rics to be exposed

## What changes were proposed in this pull request?

Implementation may expose both timing as well as size metrics. This PR enables that.

Author: Tathagata Das <tathagata.das1565@gmail.com>

Closes apache#18661 from tdas/SPARK-21409-2.
…Tracker

## What changes were proposed in this pull request?

In SPARK-21444, sitalkedia reported an issue where the `Broadcast.destroy()` call in `MapOutputTracker`'s `ShuffleStatus.invalidateSerializedMapOutputStatusCache()` was failing with an `IOException`, causing the DAGScheduler to crash and bring down the entire driver.

This is a bug introduced by apache#17955. In the old code, we removed a broadcast variable by calling `BroadcastManager.unbroadcast` with `blocking=false`, but the new code simply calls `Broadcast.destroy()` which is capable of failing with an IOException in case certain blocking RPCs time out.

The fix implemented here is to replace this with a call to `destroy(blocking = false)` and to wrap the entire operation in `Utils.tryLogNonFatalError`.

## How was this patch tested?

I haven't written regression tests for this because it's really hard to inject mocks to simulate RPC failures here. Instead, this class of issue is probably best uncovered with more generalized error injection / network unreliability / fuzz testing tools.

Author: Josh Rosen <joshrosen@databricks.com>

Closes apache#18662 from JoshRosen/SPARK-21444.
…pressions

## What changes were proposed in this pull request?

This PR changes the direction of expression transformation in the DecimalPrecision rule. Previously, the expressions were transformed down, which led to incorrect result types when decimal expressions had other decimal expressions as their operands. The root cause of this issue was in visiting outer nodes before their children. Consider the example below:

```
    val inputSchema = StructType(StructField("col", DecimalType(26, 6)) :: Nil)
    val sc = spark.sparkContext
    val rdd = sc.parallelize(1 to 2).map(_ => Row(BigDecimal(12)))
    val df = spark.createDataFrame(rdd, inputSchema)

    // Works correctly since no nested decimal expression is involved
    // Expected result type: (26, 6) * (26, 6) = (38, 12)
    df.select($"col" * $"col").explain(true)
    df.select($"col" * $"col").printSchema()

    // Gives a wrong result since there is a nested decimal expression that should be visited first
    // Expected result type: ((26, 6) * (26, 6)) * (26, 6) = (38, 12) * (26, 6) = (38, 18)
    df.select($"col" * $"col" * $"col").explain(true)
    df.select($"col" * $"col" * $"col").printSchema()
```

The example above gives the following output:

```
// Correct result without sub-expressions
== Parsed Logical Plan ==
'Project [('col * 'col) AS (col * col)#4]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
(col * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- (col * col): decimal(38,12) (nullable = true)

// Incorrect result with sub-expressions
== Parsed Logical Plan ==
'Project [(('col * 'col) * 'col) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
((col * col) * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- ((col * col) * col): decimal(38,12) (nullable = true)
```

## How was this patch tested?

This PR was tested with available unit tests. Moreover, there are tests to cover previously failing scenarios.

Author: aokolnychyi <anton.okolnychyi@sap.com>

Closes apache#18583 from aokolnychyi/spark-21332.
## What changes were proposed in this pull request?

Making those two classes will avoid Serialization issues like below:
```
Caused by: java.io.NotSerializableException: org.apache.spark.unsafe.types.UTF8String$IntWrapper
Serialization stack:
    - object not serializable (class: org.apache.spark.unsafe.types.UTF8String$IntWrapper, value: org.apache.spark.unsafe.types.UTF8String$IntWrapper326450e)
    - field (class: org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToInt$1, name: result$2, type: class org.apache.spark.unsafe.types.UTF8String$IntWrapper)
    - object (class org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToInt$1, <function1>)
```

## How was this patch tested?

- [x] Manual testing
- [ ] Unit test

Author: Burak Yavuz <brkyvz@gmail.com>

Closes apache#18660 from brkyvz/serializableutf8.
## What changes were proposed in this pull request?

Address scapegoat warnings for:
- BigDecimal double constructor
- Catching NPE
- Finalizer without super
- List.size is O(n)
- Prefer Seq.empty
- Prefer Set.empty
- reverse.map instead of reverseMap
- Type shadowing
- Unnecessary if condition.
- Use .log1p
- Var could be val

In some instances like Seq.empty, I avoided making the change even where valid in test code to keep the scope of the change smaller. Those issues are concerned with performance and it won't matter for tests.

## How was this patch tested?

Existing tests

Author: Sean Owen <sowen@cloudera.com>

Closes apache#18635 from srowen/Scapegoat1.
…ing unshaded JARs, and repromote to compile in MLlib

Following the comment at https://issues.apache.org/jira/browse/SPARK-15526?focusedCommentId=16086106&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-16086106 -- this change actually needed a little more work to be complete.

This also marks JPMML as `provided` to make sure its JARs aren't included in the `jars` output, but then scopes to `compile` in `mllib`. This is how Guava is handled.

Checked result in `assembly/target/scala-2.11/jars` to verify there are no JPMML jars. Maven and SBT builds still work.

Author: Sean Owen <sowen@cloudera.com>

Closes apache#18637 from srowen/SPARK-15526.2.
…oken acquiring failure

## What changes were proposed in this pull request?

In the current `YARNHadoopDelegationTokenManager`, `FileSystem` to which to get tokens are created out of KDC logged UGI, using these `FileSystem` to get new tokens will lead to exception. The main thing is that Spark code trying to get new tokens from the FS created with token auth-ed UGI, but Hadoop can only grant new tokens in kerberized UGI. To fix this issue, we should lazily create these FileSystem within KDC logged UGI.

## How was this patch tested?

Manual verification in secure cluster.

CC vanzin mgummelt please help to review, thanks!

Author: jerryshao <sshao@hortonworks.com>

Closes apache#18633 from jerryshao/SPARK-21411.
Instead of using the host's cpu count, use the number of cores allocated
for the Spark process when sizing the RPC dispatch thread pool. This avoids
creating large thread pools on large machines when the number of allocated
cores is small.

Tested by verifying number of threads with spark.executor.cores set
to 1 and 4; same thing for YARN AM.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes apache#18639 from vanzin/SPARK-21408.
…ndle partition values with dot

## What changes were proposed in this pull request?

When we list partitions from hive metastore with a partial partition spec, we are expecting exact matching according to the partition values. However, hive treats dot specially and match any single character for dot. We should do an extra filter to drop unexpected partitions.

## How was this patch tested?

new regression test.

Author: Wenchen Fan <wenchen@databricks.com>

Closes apache#18671 from cloud-fan/hive.
## What changes were proposed in this pull request?

- Added batchId to StreamingQueryProgress.json as that was missing from the generated json.
- Also, removed recently added numPartitions from StatefulOperatorProgress as this value does not change through the query run, and there are other ways to find that.

## How was this patch tested?
Updated unit tests

Author: Tathagata Das <tathagata.das1565@gmail.com>

Closes apache#18675 from tdas/SPARK-21462.
## What changes were proposed in this pull request?

Add EmptyDirectoryWriteTask for empty task while writing files. Fix the empty result for parquet format by leaving the first partition for meta writing.

## How was this patch tested?

Add new test in `FileFormatWriterSuite `

Author: xuanyuanking <xyliyuanjian@gmail.com>

Closes apache#18654 from xuanyuanking/SPARK-21435.
…tor pattern and mixin

## What changes were proposed in this pull request?
This PR is to add back the stats propagation of `Window` and remove the stats calculation of the leaf node `Range`, which has been covered by https://github.com/rxin/spark/blob/9c32d2507d3f4f269e17e841a4a4e4920b35a5e9/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/SizeInBytesOnlyStatsPlanVisitor.scala#L56

## How was this patch tested?
Added two test cases.

Author: gatorsmile <gatorsmile@gmail.com>

Closes apache#18677 from gatorsmile/visitStats.
## What changes were proposed in this pull request?
The most of BoundedPriorityQueue usages in ML/MLLIB are:
Get the value of BoundedPriorityQueue, then sort it.
For example, in Word2Vec: pq.toSeq.sortBy(-_._2)
in ALS, pq.toArray.sorted()

The test results show using pq.poll is much faster than sort the value.
It is good to add the poll function for BoundedPriorityQueue.

## How was this patch tested?
The existing UT

Author: Peng <peng.meng@intel.com>
Author: Peng Meng <peng.meng@intel.com>

Closes apache#18620 from mpjlu/add-poll.
## What changes were proposed in this pull request?

In `SlidingWindowFunctionFrame`, it is now adding all rows to the buffer for which the input row value is equal to or less than the output row upper bound, then drop all rows from the buffer for which the input row value is smaller than the output row lower bound.
This could result in the buffer is very big though the window is small.
For example:
```
select a, b, sum(a)
over (partition by b order by a range between 1000000 following and 1000001 following)
from table
```
We can refine the logic and just add the qualified rows into buffer.

## How was this patch tested?
Manual test:
Run sql
`select shop, shopInfo, district, sum(revenue) over(partition by district order by revenue range between 100 following and 200 following) from revenueList limit 10`
against a table with 4  columns(shop: String, shopInfo: String, district: String, revenue: Int). The biggest partition is around 2G bytes, containing 200k lines.
Configure the executor with 2G bytes memory.
With the change in this pr, it works find. Without this change, below exception will be thrown.
```
MemoryError: Java heap space
	at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:504)
	at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:62)
	at org.apache.spark.sql.execution.window.SlidingWindowFunctionFrame.write(WindowFunctionFrame.scala:201)
	at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.next(WindowExec.scala:365)
	at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.next(WindowExec.scala:289)
	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
	at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
	at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
	at org.apache.spark.scheduler.Task.run(Task.scala:108)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:341)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
```

Author: jinxing <jinxing6042@126.com>

Closes apache#18634 from jinxing64/SPARK-21414.
…lures in some cases

## What changes were proposed in this pull request?

https://issues.apache.org/jira/projects/SPARK/issues/SPARK-21441

This issue can be reproduced by the following example:

```
val spark = SparkSession
   .builder()
   .appName("smj-codegen")
   .master("local")
   .config("spark.sql.autoBroadcastJoinThreshold", "1")
   .getOrCreate()
val df1 = spark.createDataFrame(Seq((1, 1), (2, 2), (3, 3))).toDF("key", "int")
val df2 = spark.createDataFrame(Seq((1, "1"), (2, "2"), (3, "3"))).toDF("key", "str")
val df = df1.join(df2, df1("key") === df2("key"))
   .filter("int = 2 or reflect('java.lang.Integer', 'valueOf', str) = 1")
   .select("int")
   df.show()
```

To conclude, the issue happens when:
(1) SortMergeJoin condition contains CodegenFallback expressions.
(2) In PhysicalPlan tree, SortMergeJoin node  is the child of root node, e.g., the Project in above example.

This patch fixes the logic in `CollapseCodegenStages` rule.

## How was this patch tested?
Unit test and manual verification in our cluster.

Author: donnyzone <wellfengzhu@gmail.com>

Closes apache#18656 from DonnyZone/Fix_SortMergeJoinExec.
…ime class

## What changes were proposed in this pull request?

Use of `ProcessingTime` class was deprecated in favor of `Trigger.ProcessingTime` in Spark 2.2. However interval uses to ProcessingTime causes deprecation warnings during compilation. This cannot be avoided entirely as even though it is deprecated as a public API, ProcessingTime instances are used internally in TriggerExecutor. This PR is to minimize the warning by removing its uses from tests as much as possible.

## How was this patch tested?
Existing tests.

Author: Tathagata Das <tathagata.das1565@gmail.com>

Closes apache#18678 from tdas/SPARK-21464.
nchammas and others added 15 commits August 16, 2017 11:19
Proposed changes:
* Clarify the type error that `Column.substr()` gives.

Test plan:
* Tested this manually.
* Test code:
    ```python
    from pyspark.sql.functions import col, lit
    spark.createDataFrame([['nick']], schema=['name']).select(col('name').substr(0, lit(1)))
    ```
* Before:
    ```
    TypeError: Can not mix the type
    ```
* After:
    ```
    TypeError: startPos and length must be the same type. Got <class 'int'> and
    <class 'pyspark.sql.column.Column'>, respectively.
    ```

Author: Nicholas Chammas <nicholas.chammas@gmail.com>

Closes apache#18926 from nchammas/SPARK-21712-substr-type-error.
## What changes were proposed in this pull request?

This patch adds the DataFrames API to the multivariate summarizer (mean, variance, etc.). In addition to all the features of MultivariateOnlineSummarizer, it also allows the user to select a subset of the metrics.

## How was this patch tested?

Testcases added.

## Performance
Resolve several performance issues in apache#17419, further optimization pending on SQL team's work. One of the SQL layer performance issue related to these feature has been resolved in apache#18712, thanks liancheng and cloud-fan

### Performance data

(test on my laptop, use 2 partitions. tries out = 20, warm up = 10)

The unit of test results is records/milliseconds (higher is better)

Vector size/records number | 1/10000000 | 10/1000000 | 100/1000000 | 1000/100000 | 10000/10000
----|------|----|---|----|----
Dataframe | 15149  | 7441 | 2118 | 224 | 21
RDD from Dataframe | 4992  | 4440 | 2328 | 320 | 33
raw RDD | 53931  | 20683 | 3966 | 528 | 53

Author: WeichenXu <WeichenXu123@outlook.com>

Closes apache#18798 from WeichenXu123/SPARK-19634-dataframe-summarizer.
## What changes were proposed in this pull request?

Like Parquet, this PR aims to depend on the latest Apache ORC 1.4 for Apache Spark 2.3. There are key benefits for Apache ORC 1.4.

- Stability: Apache ORC 1.4.0 has many fixes and we can depend on ORC community more.
- Maintainability: Reduce the Hive dependency and can remove old legacy code later.

Later, we can get the following two key benefits by adding new ORCFileFormat in SPARK-20728 (apache#17980), too.
- Usability: User can use ORC data sources without hive module, i.e, -Phive.
- Speed: Use both Spark ColumnarBatch and ORC RowBatch together. This will be faster than the current implementation in Spark.

## How was this patch tested?

Pass the jenkins.

Author: Dongjoon Hyun <dongjoon@apache.org>

Closes apache#18640 from dongjoon-hyun/SPARK-21422.
## What changes were proposed in this pull request?

Check the option "numFeatures" only when reading LibSVM, not when writing. When writing, Spark was raising an exception. After the change it will ignore the option completely. liancheng HyukjinKwon

(Maybe the usage should be forbidden when writing, in a major version change?).

## How was this patch tested?

Manual test, that loading and writing LibSVM files work fine, both with and without the numFeatures option.

Please review http://spark.apache.org/contributing.html before opening a pull request.

Author: Jan Vrsovsky <jan.vrsovsky@firma.seznam.cz>

Closes apache#18872 from ProtD/master.
This PR adds a `FeatureHasher` transformer, modeled on [scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html) and [Vowpal wabbit](https://github.com/JohnLangford/vowpal_wabbit/wiki/Feature-Hashing-and-Extraction).

The transformer operates on multiple input columns in one pass. Current behavior is:
* for numerical columns, the values are assumed to be real values and the feature index is `hash(columnName)` while feature value is `feature_value`
* for string columns, the values are assumed to be categorical and the feature index is `hash(column_name=feature_value)`, while feature value is `1.0`
* For hash collisions, feature values will be summed
* `null` (missing) values are ignored

The following dataframe illustrates the basic semantics:
```
+---+------+-----+---------+------+-----------------------------------------+
|int|double|float|stringNum|string|features                                 |
+---+------+-----+---------+------+-----------------------------------------+
|3  |4.0   |5.0  |1        |foo   |(16,[0,8,11,12,15],[5.0,3.0,1.0,4.0,1.0])|
|6  |7.0   |8.0  |2        |bar   |(16,[0,8,11,12,15],[8.0,6.0,1.0,7.0,1.0])|
+---+------+-----+---------+------+-----------------------------------------+
```

## How was this patch tested?

New unit tests and manual experiments.

Author: Nick Pentreath <nickp@za.ibm.com>

Closes apache#18513 from MLnick/FeatureHasher.
…executors when tasks still to run

## What changes were proposed in this pull request?

Right now spark lets go of executors when they are idle for the 60s (or configurable time). I have seen spark let them go when they are idle but they were really needed. I have seen this issue when the scheduler was waiting to get node locality but that takes longer than the default idle timeout. In these jobs the number of executors goes down really small (less than 10) but there are still like 80,000 tasks to run.
We should consider not allowing executors to idle timeout if they are still needed according to the number of tasks to be run.

## How was this patch tested?

Tested by manually adding executors to `executorsIdsToBeRemoved` list and seeing if those executors were removed when there are a lot of tasks and a high `numExecutorsTarget` value.

Code used

In  `ExecutorAllocationManager.start()`

```
    start_time = clock.getTimeMillis()
```

In `ExecutorAllocationManager.schedule()`
```
    val executorIdsToBeRemoved = ArrayBuffer[String]()
    if ( now > start_time + 1000 * 60 * 2) {
      logInfo("--- REMOVING 1/2 of the EXECUTORS ---")
      start_time +=  1000 * 60 * 100
      var counter = 0
      for (x <- executorIds) {
        counter += 1
        if (counter == 2) {
          counter = 0
          executorIdsToBeRemoved += x
        }
      }
    }

Author: John Lee <jlee2@yahoo-inc.com>

Closes apache#18874 from yoonlee95/SPARK-21656.
…at is closed when the function is too long

## What changes were proposed in this pull request?
Close the whole stage codegen when the function lines is longer than the maxlines which will be setted by
spark.sql.codegen.MaxFunctionLength parameter, because when the function is too long , it will not get the JIT  optimizing.
A benchmark test result is 10x slower when the generated function is too long :

ignore("max function length of wholestagecodegen") {
    val N = 20 << 15

    val benchmark = new Benchmark("max function length of wholestagecodegen", N)
    def f(): Unit = sparkSession.range(N)
      .selectExpr(
        "id",
        "(id & 1023) as k1",
        "cast(id & 1023 as double) as k2",
        "cast(id & 1023 as int) as k3",
        "case when id > 100 and id <= 200 then 1 else 0 end as v1",
        "case when id > 200 and id <= 300 then 1 else 0 end as v2",
        "case when id > 300 and id <= 400 then 1 else 0 end as v3",
        "case when id > 400 and id <= 500 then 1 else 0 end as v4",
        "case when id > 500 and id <= 600 then 1 else 0 end as v5",
        "case when id > 600 and id <= 700 then 1 else 0 end as v6",
        "case when id > 700 and id <= 800 then 1 else 0 end as v7",
        "case when id > 800 and id <= 900 then 1 else 0 end as v8",
        "case when id > 900 and id <= 1000 then 1 else 0 end as v9",
        "case when id > 1000 and id <= 1100 then 1 else 0 end as v10",
        "case when id > 1100 and id <= 1200 then 1 else 0 end as v11",
        "case when id > 1200 and id <= 1300 then 1 else 0 end as v12",
        "case when id > 1300 and id <= 1400 then 1 else 0 end as v13",
        "case when id > 1400 and id <= 1500 then 1 else 0 end as v14",
        "case when id > 1500 and id <= 1600 then 1 else 0 end as v15",
        "case when id > 1600 and id <= 1700 then 1 else 0 end as v16",
        "case when id > 1700 and id <= 1800 then 1 else 0 end as v17",
        "case when id > 1800 and id <= 1900 then 1 else 0 end as v18")
      .groupBy("k1", "k2", "k3")
      .sum()
      .collect()

    benchmark.addCase(s"codegen = F") { iter =>
      sparkSession.conf.set("spark.sql.codegen.wholeStage", "false")
      f()
    }

    benchmark.addCase(s"codegen = T") { iter =>
      sparkSession.conf.set("spark.sql.codegen.wholeStage", "true")
      sparkSession.conf.set("spark.sql.codegen.MaxFunctionLength", "10000")
      f()
    }

    benchmark.run()

    /*
    Java HotSpot(TM) 64-Bit Server VM 1.8.0_111-b14 on Windows 7 6.1
    Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
    max function length of wholestagecodegen: Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
    ------------------------------------------------------------------------------------------------
    codegen = F                                    443 /  507          1.5         676.0       1.0X
    codegen = T                                   3279 / 3283          0.2        5002.6       0.1X
     */
  }

## How was this patch tested?
Run the unit test

Author: 10129659 <chen.yanshan@zte.com.cn>

Closes apache#18810 from eatoncys/codegen.
## What changes were proposed in this pull request?

When a session is closed the Thriftserver doesn't cancel the jobs which may still be running. This is a huge waste of resources.
This PR address the problem canceling the pending jobs when a session is closed.

## How was this patch tested?

The patch was tested manually.

Author: Marco Gaido <mgaido@hortonworks.com>

Closes apache#18951 from mgaido91/SPARK-21738.
## What changes were proposed in this pull request?

When use Vector.compressed to change a Vector to SparseVector, the performance is very low comparing with Vector.toSparse.
This is because you have to scan the value three times using Vector.compressed, but you just need two times when use Vector.toSparse.
When the length of the vector is large, there is significant performance difference between this two method.

## How was this patch tested?

The existing UT

Author: Peng Meng <peng.meng@intel.com>

Closes apache#18899 from mpjlu/optVectorCompress.
… than 2GB

## What changes were proposed in this pull request?
introduced `DiskBlockData`, a new implementation of `BlockData` representing a whole file.
this is somehow related to [SPARK-6236](https://issues.apache.org/jira/browse/SPARK-6236) as well

This class follows the implementation of `EncryptedBlockData` just without the encryption. hence:
* `toInputStream` is implemented using a `FileInputStream` (todo: encrypted version actually uses `Channels.newInputStream`, not sure if it's the right choice for this)
* `toNetty` is implemented in terms of `io.netty.channel.DefaultFileRegion`
* `toByteBuffer` fails for files larger than 2GB (same behavior of the original code, just postponed a bit), it also respects the same configuration keys defined by the original code to choose between memory mapping and simple file read.

## How was this patch tested?
added test to DiskStoreSuite and MemoryManagerSuite

Author: Eyal Farago <eyal@nrgene.com>

Closes apache#18855 from eyalfa/SPARK-3151.
## What changes were proposed in this pull request?

For top-most limit, we will use a special operator to execute it: `CollectLimitExec`.

`CollectLimitExec` will retrieve `n`(which is the limit) rows from each partition of the child plan output, see https://github.com/apache/spark/blob/v2.2.0/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala#L311. It's very likely that we don't exhaust the child plan output.

This is fine when whole-stage-codegen is off, as child plan will release the resource via task completion listener. However, when whole-stage codegen is on, the resource can only be released if all output is consumed.

To fix this memory leak, one simple approach is, when `CollectLimitExec` retrieve `n` rows from child plan output, child plan output should only have `n` rows, then the output is exhausted and resource is released. This can be done by wrapping child plan with `LocalLimit`

## How was this patch tested?

a regression test

Author: Wenchen Fan <wenchen@databricks.com>

Closes apache#18955 from cloud-fan/leak.
…dress

## What changes were proposed in this pull request?

The patch lets spark web ui use FQDN as its hostname instead of ip address.

In current implementation, ip address of a driver host is set to DRIVER_HOST_ADDRESS. This becomes a problem when we enable SSL using "spark.ssl.enabled", "spark.ssl.trustStore" and "spark.ssl.keyStore" properties. When we configure these properties, spark web ui is launched with SSL enabled and the HTTPS server is configured with the custom SSL certificate you configured in these properties.
In this case, client gets javax.net.ssl.SSLPeerUnverifiedException exception when the client accesses the spark web ui because the client fails to verify the SSL certificate (Common Name of the SSL cert does not match with DRIVER_HOST_ADDRESS).

To avoid the exception, we should use FQDN of the driver host for DRIVER_HOST_ADDRESS.

Error message that client gets when the client accesses spark web ui:
javax.net.ssl.SSLPeerUnverifiedException: Certificate for <10.102.138.239> doesn't match any of the subject alternative names: []

## How was this patch tested?
manual tests

Author: Hideaki Tanaka <tanakah@amazon.com>

Closes apache#18846 from thideeeee/SPARK-21642.
…jars for reusing CliSessionState

## What changes were proposed in this pull request?

Set isolated to false while using builtin hive jars and `SessionState.get` returns a `CliSessionState` instance.

## How was this patch tested?

1 Unit Tests
2 Manually verified: `hive.exec.strachdir` was only created once because of reusing cliSessionState
```java
➜  spark git:(SPARK-21428) ✗ bin/spark-sql --conf spark.sql.hive.metastore.jars=builtin

log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/07/16 23:59:27 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/07/16 23:59:27 INFO HiveMetaStore: 0: Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore
17/07/16 23:59:27 INFO ObjectStore: ObjectStore, initialize called
17/07/16 23:59:28 INFO Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will be ignored
17/07/16 23:59:28 INFO Persistence: Property datanucleus.cache.level2 unknown - will be ignored
17/07/16 23:59:29 INFO ObjectStore: Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"
17/07/16 23:59:30 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:30 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:31 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:31 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:31 INFO MetaStoreDirectSql: Using direct SQL, underlying DB is DERBY
17/07/16 23:59:31 INFO ObjectStore: Initialized ObjectStore
17/07/16 23:59:31 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.2.0
17/07/16 23:59:31 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException
17/07/16 23:59:32 INFO HiveMetaStore: Added admin role in metastore
17/07/16 23:59:32 INFO HiveMetaStore: Added public role in metastore
17/07/16 23:59:32 INFO HiveMetaStore: No user is added in admin role, since config is empty
17/07/16 23:59:32 INFO HiveMetaStore: 0: get_all_databases
17/07/16 23:59:32 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_all_databases
17/07/16 23:59:32 INFO HiveMetaStore: 0: get_functions: db=default pat=*
17/07/16 23:59:32 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_functions: db=default pat=*
17/07/16 23:59:32 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MResourceUri" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:32 INFO SessionState: Created local directory: /var/folders/k2/04p4k4ws73l6711h_mz2_tq00000gn/T/beea7261-221a-4711-89e8-8b12a9d37370_resources
17/07/16 23:59:32 INFO SessionState: Created HDFS directory: /tmp/hive/Kent/beea7261-221a-4711-89e8-8b12a9d37370
17/07/16 23:59:32 INFO SessionState: Created local directory: /var/folders/k2/04p4k4ws73l6711h_mz2_tq00000gn/T/Kent/beea7261-221a-4711-89e8-8b12a9d37370
17/07/16 23:59:32 INFO SessionState: Created HDFS directory: /tmp/hive/Kent/beea7261-221a-4711-89e8-8b12a9d37370/_tmp_space.db
17/07/16 23:59:32 INFO SparkContext: Running Spark version 2.3.0-SNAPSHOT
17/07/16 23:59:32 INFO SparkContext: Submitted application: SparkSQL::10.0.0.8
17/07/16 23:59:32 INFO SecurityManager: Changing view acls to: Kent
17/07/16 23:59:32 INFO SecurityManager: Changing modify acls to: Kent
17/07/16 23:59:32 INFO SecurityManager: Changing view acls groups to:
17/07/16 23:59:32 INFO SecurityManager: Changing modify acls groups to:
17/07/16 23:59:32 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(Kent); groups with view permissions: Set(); users  with modify permissions: Set(Kent); groups with modify permissions: Set()
17/07/16 23:59:33 INFO Utils: Successfully started service 'sparkDriver' on port 51889.
17/07/16 23:59:33 INFO SparkEnv: Registering MapOutputTracker
17/07/16 23:59:33 INFO SparkEnv: Registering BlockManagerMaster
17/07/16 23:59:33 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/07/16 23:59:33 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/07/16 23:59:33 INFO DiskBlockManager: Created local directory at /private/var/folders/k2/04p4k4ws73l6711h_mz2_tq00000gn/T/blockmgr-9cfae28a-01e9-4c73-a1f1-f76fa52fc7a5
17/07/16 23:59:33 INFO MemoryStore: MemoryStore started with capacity 366.3 MB
17/07/16 23:59:33 INFO SparkEnv: Registering OutputCommitCoordinator
17/07/16 23:59:33 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/07/16 23:59:33 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://10.0.0.8:4040
17/07/16 23:59:33 INFO Executor: Starting executor ID driver on host localhost
17/07/16 23:59:33 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 51890.
17/07/16 23:59:33 INFO NettyBlockTransferService: Server created on 10.0.0.8:51890
17/07/16 23:59:33 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
17/07/16 23:59:33 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:33 INFO BlockManagerMasterEndpoint: Registering block manager 10.0.0.8:51890 with 366.3 MB RAM, BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:33 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:33 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:34 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('file:/Users/Kent/Documents/spark/spark-warehouse').
17/07/16 23:59:34 INFO SharedState: Warehouse path is 'file:/Users/Kent/Documents/spark/spark-warehouse'.
17/07/16 23:59:34 INFO HiveUtils: Initializing HiveMetastoreConnection version 1.2.1 using Spark classes.
17/07/16 23:59:34 INFO HiveClientImpl: Warehouse location for Hive client (version 1.2.2) is /user/hive/warehouse
17/07/16 23:59:34 INFO HiveMetaStore: 0: get_database: default
17/07/16 23:59:34 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_database: default
17/07/16 23:59:34 INFO HiveClientImpl: Warehouse location for Hive client (version 1.2.2) is /user/hive/warehouse
17/07/16 23:59:34 INFO HiveMetaStore: 0: get_database: global_temp
17/07/16 23:59:34 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_database: global_temp
17/07/16 23:59:34 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
17/07/16 23:59:34 INFO HiveClientImpl: Warehouse location for Hive client (version 1.2.2) is /user/hive/warehouse
17/07/16 23:59:34 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
spark-sql>

```
cc cloud-fan gatorsmile

Author: Kent Yao <yaooqinn@hotmail.com>
Author: hzyaoqin <hzyaoqin@corp.netease.com>

Closes apache#18648 from yaooqinn/SPARK-21428.
@ash211 ash211 changed the title Resync from Apache [NOSQUASH] Resync from Apache Aug 18, 2017
@ash211
Copy link
Author

ash211 commented Aug 18, 2017

Hmmm looks like we might have a problem with bumping netty. We took it from the 4.0.x series to the 4.1.x series in https://github.com/palantir/spark/pull/179/files#diff-600376dffeb79835ede4a0b285078036R626

But now when pulling in latest Apache code, I'm seeing this failure:

sbt.ForkMain$ForkError: sbt.ForkMain$ForkError: java.lang.NoClassDefFoundError: io/netty/util/collection/IntObjectMap$Entry
	at org.apache.arrow.vector.util.MapWithOrdinal$1$1.apply(MapWithOrdinal.java:136)

Arrow (0.4.0) depends on netty 4.0.41

And between netty 4.0.43 (current Spark master version) and 4.1.13 (current Palantir master version) that "entry" class was renamed:

aash@aash01-mac ~$ jar tf /Users/aash/.gradle//caches/modules-2/files-2.1/io.netty/netty-all/4.0.43.Final/9781746a179070e886e1fb4b1971a6bbf02061a4/netty-all-4.0.43.Final.jar | grep IntObjectMap
io/netty/util/collection/IntObjectMap.class
io/netty/util/collection/IntObjectMap$Entry.class
aash@aash01-mac ~$ jar tf /Users/aash/.gradle//caches/modules-2/files-2.1/io.netty/netty-all/4.1.13.Final/e1f2d1ee50626697d3ea73a11f1c7301e8589ef8/netty-all-4.1.13.Final.jar | grep IntObjectMap
io/netty/util/collection/IntObjectMap$PrimitiveEntry.class
io/netty/util/collection/IntObjectMap.class
aash@aash01-mac ~$

Possibly we need to drop back down to the netty 4.0 series until Spark/Arrow go to netty 4.1 ?

cc @robert3005 @mccheah

@ash211
Copy link
Author

ash211 commented Aug 20, 2017

Rename happened here, only in the 4.1.x line: netty/netty@93fc3c6#diff-dd65461359cfebaaae8d8c1590a5ffa9R31

@robert3005
Copy link

Sucks. In light of https://issues.apache.org/jira/browse/SPARK-19552 we will have to downgrade.

@ash211
Copy link
Author

ash211 commented Aug 21, 2017

Bummer -- downgraded at bd08934

@ash211
Copy link
Author

ash211 commented Aug 21, 2017

Ready for review @mccheah / @robert3005 . The last few commits are the interesting ones.


@Override
public int compare(Object baseObj1, long baseOff1, Object baseObj2, long baseOff2) {
<<<<<<< HEAD
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hm, what was the context for these conflicts?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We merged a PR into Palantir Spark at #222 but the final version later submitted upstream at apache#18543 and reworked into merged PR apache#18679 came out differently. This resolves the conflict between the two with the version merged upstream in 18679

@ash211 ash211 merged commit 6ecc757 into master Aug 23, 2017
@ash211 ash211 deleted the resync-apache branch August 23, 2017 22:00
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.