Closed
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
It seems that this is not reproducible for everyone, but it happened to me on 2 separate machines as well as in google colab.
If anyone can test and see if it reproduces that would be great.
import numpy as np
import pandas as pd
M, N = 10, 10_000
tol = 0.5
y = np.random.rand(N, M)
y[y > tol] = float("nan")
df_arrow = pd.DataFrame(y, dtype="float32[pyarrow]")
df_arrow.index.name = "time"
df_numpy = df_arrow.convert_dtypes(dtype_backend="numpy_nullable")
%timeit df_numpy.groupby("time").mean(); # 4.02 ms ± 897 µs
%timeit df_arrow.groupby("time").mean(); # 10.3 s ± 661 ms
Related:
- PERF: group by manipulation is slower with new arrow engine #52070
- PERF:
agg
is an order of magnitude slower withpyarrow
dtypes #54065 - PERF: groupby reductions with pyarrow dtypes #52469
Installed Versions
INSTALLED VERSIONS
------------------
commit : 0f437949513225922d851e9581723d82120684a6
python : 3.10.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.109+
Version : #1 SMP Fri Jun 9 10:57:30 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.3
numpy : 1.22.4
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 67.7.2
pip : 23.1.2
Cython : 0.29.36
pytest : 7.2.2
hypothesis : None
sphinx : 3.5.4
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : 1.1
pymysql : None
psycopg2 : 2.9.6
jinja2 : 3.1.2
IPython : 7.34.0
pandas_datareader: 0.10.0
bs4 : 4.11.2
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2023.6.0
gcsfs : 2023.6.0
matplotlib : 3.7.1
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.17.9
pyarrow : 12.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
snappy : None
sqlalchemy : 2.0.18
tables : 3.8.0
tabulate : 0.8.10
xarray : 2022.12.0
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
Prior Performance
No response