Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multi-dimensional learning rate (sigma0) for AdamW #462

Merged
merged 8 commits into from
Sep 10, 2024
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

## Features

- [#462](https://github.com/pybop-team/PyBOP/pull/462) - Enables multidimensional learning rate for `pybop.AdamW` with updated (more robust) integration testing. Fixes bug in `Minkowski` and `SumofPower` cost functions for gradient-based optimisers.
- [#411](https://github.com/pybop-team/PyBOP/pull/411) - Updates notebooks with README in `examples/` directory, removes kaleido dependency and moves to nbviewer rendering, displays notebook figures with `notebook_connected` plotly renderer
- [#6](https://github.com/pybop-team/PyBOP/issues/6) - Adds Monte Carlo functionality, with methods based on Pints' algorithms. A base class is added `BaseSampler`, in addition to `PintsBaseSampler`.
- [#353](https://github.com/pybop-team/PyBOP/issues/353) - Allow user-defined check_params functions to enforce nonlinear constraints, and enable SciPy constrained optimisation methods
Expand Down
2 changes: 1 addition & 1 deletion examples/scripts/spm_IRPropMin.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,4 +54,4 @@

# Plot the cost landscape with optimisation path
bounds = np.asarray([[0.5, 0.8], [0.4, 0.7]])
pybop.plot2d(optim, bounds=bounds, steps=15)
pybop.plot2d(optim, gradient=True, bounds=bounds, steps=15)
2 changes: 1 addition & 1 deletion pybop/costs/_likelihoods.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ class GaussianLogLikelihood(BaseLikelihood):
def __init__(
self,
problem: BaseProblem,
sigma0: Union[float, list[float], list[Parameter]] = 0.002,
sigma0: Union[float, list[float], list[Parameter]] = 1e-2,
dsigma_scale: float = 1.0,
):
super().__init__(problem)
Expand Down
14 changes: 8 additions & 6 deletions pybop/costs/fitting_costs.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,8 +122,8 @@ def compute(
r = np.asarray([y[signal] - self._target[signal] for signal in self.signal])
e = np.sum(np.sum(np.abs(r) ** 2, axis=0), axis=0)

if calculate_grad is True:
de = 2 * np.sum(np.sum((r * dy.T), axis=2), axis=1)
if calculate_grad:
de = 2 * np.sum((r * dy.T), axis=(1, 2))
return e, de

return e
Expand Down Expand Up @@ -204,9 +204,9 @@ def compute(
r = np.asarray([y[signal] - self._target[signal] for signal in self.signal])
e = np.sum(np.abs(r) ** self.p) ** (1 / self.p)

if calculate_grad is True:
if calculate_grad:
de = np.sum(
np.sum(r ** (self.p - 1) * dy.T, axis=2)
np.sum(np.sign(r) * np.abs(r) ** (self.p - 1) * dy.T, axis=2)
/ (e ** (self.p - 1) + np.finfo(float).eps),
axis=1,
)
Expand Down Expand Up @@ -287,8 +287,10 @@ def compute(
r = np.asarray([y[signal] - self._target[signal] for signal in self.signal])
e = np.sum(np.abs(r) ** self.p)

if calculate_grad is True:
de = self.p * np.sum(np.sum(r ** (self.p - 1) * dy.T, axis=2), axis=1)
if calculate_grad:
de = self.p * np.sum(
np.sign(r) * np.abs(r) ** (self.p - 1) * dy.T, axis=(1, 2)
)
return e, de

return e
Expand Down
3 changes: 1 addition & 2 deletions pybop/optimisers/_adamw.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,8 +86,7 @@ def __init__(self, x0, sigma0=0.015, boundaries=None):
self._b2 = 0.999

# Step size
self._alpha = np.min(self._sigma0)

self._alpha = self._sigma0
# Weight decay rate
self._lam = 0.01

Expand Down
14 changes: 5 additions & 9 deletions tests/integration/test_eis_parameterisation.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,11 +55,8 @@ def init_soc(self, request):

@pytest.fixture(
params=[
pybop.GaussianLogLikelihoodKnownSigma,
pybop.GaussianLogLikelihood,
pybop.RootMeanSquaredError,
pybop.SumSquaredError,
pybop.SumofPower,
pybop.Minkowski,
pybop.MAP,
]
Expand All @@ -82,8 +79,6 @@ def noise(self, sigma, values):
pybop.SciPyDifferentialEvolution,
pybop.CMAES,
pybop.CuckooSearch,
pybop.NelderMead,
pybop.SNES,
pybop.XNES,
]
)
Expand Down Expand Up @@ -131,6 +126,9 @@ def optim(self, optimiser, model, parameters, cost, init_soc):
"max_iterations": 250,
"absolute_tolerance": 1e-6,
"max_unchanged_iterations": 35,
"sigma0": [0.05, 0.05, 1e-3]
if isinstance(cost, pybop.GaussianLogLikelihood)
else 0.05,
}

if isinstance(cost, pybop.MAP):
Expand All @@ -139,10 +137,8 @@ def optim(self, optimiser, model, parameters, cost, init_soc):
0.2, 2.0
) # Increase range to avoid prior == np.inf

# Set sigma0 and create optimiser
sigma0 = 0.05 if isinstance(cost, pybop.MAP) else None
optim = optimiser(sigma0=sigma0, **common_args)

# Create optimiser
optim = optimiser(**common_args)
return optim

@pytest.mark.integration
Expand Down
22 changes: 11 additions & 11 deletions tests/integration/test_spm_parameterisations.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def optim(self, optimiser, model, parameters, cost, init_soc):
problem, pybop.GaussianLogLikelihoodKnownSigma, sigma0=self.sigma0
)
elif cost in [pybop.SumofPower, pybop.Minkowski]:
cost = cost(problem, p=2)
cost = cost(problem, p=2.5)
else:
cost = cost(problem)

Expand All @@ -122,6 +122,9 @@ def optim(self, optimiser, model, parameters, cost, init_soc):
"max_iterations": 250,
"absolute_tolerance": 1e-6,
"max_unchanged_iterations": 55,
"sigma0": [0.05, 0.05, 1e-3]
if isinstance(cost, pybop.GaussianLogLikelihood)
else 0.05,
}

if isinstance(cost, pybop.MAP):
Expand All @@ -131,16 +134,7 @@ def optim(self, optimiser, model, parameters, cost, init_soc):
) # Increase range to avoid prior == np.inf

# Set sigma0 and create optimiser
sigma0 = 0.05 if isinstance(cost, pybop.MAP) else None
optim = optimiser(sigma0=sigma0, **common_args)

# AdamW will use lowest sigma0 for learning rate, so allow more iterations
if issubclass(optimiser, (pybop.AdamW, pybop.IRPropMin)) and isinstance(
cost, pybop.GaussianLogLikelihood
):
common_args["max_unchanged_iterations"] = 75
optim = optimiser(**common_args)

optim = optimiser(**common_args)
return optim

@pytest.mark.integration
Expand Down Expand Up @@ -221,6 +215,9 @@ def test_multiple_signals(self, multi_optimiser, spm_two_signal_cost):
"max_iterations": 250,
"absolute_tolerance": 1e-6,
"max_unchanged_iterations": 55,
"sigma0": [0.035, 0.035, 6e-3, 6e-3]
if spm_two_signal_cost is pybop.GaussianLogLikelihood
else None,
}

# Test each optimiser
Expand All @@ -230,6 +227,9 @@ def test_multiple_signals(self, multi_optimiser, spm_two_signal_cost):
if isinstance(spm_two_signal_cost, pybop.GaussianLogLikelihood):
self.ground_truth = np.concatenate((self.ground_truth, combined_sigma0))

if issubclass(multi_optimiser, pybop.BasePintsOptimiser):
optim.set_max_unchanged_iterations(iterations=35, absolute_tolerance=1e-6)

initial_cost = optim.cost(optim.parameters.initial_value())
x, final_cost = optim.run()

Expand Down
Loading