Skip to content

Upgrade default priors in CLV GammaGammaModel #2082

@ColtAllen

Description

@ColtAllen

The default model configuration for GammaGammaModel contains HalfFlat priors, which can create unstable behavior as data drifts in automated pipelines. Weibull priors are a superior option, and also used as defaults for the flagship ParetoNBDModel. The following configuration would work well:

from pymc_extras.prior import Prior

spend_model = clv.GammaGammaModel(
    data=ggm_fit_data,
    model_config= {
        "p": Prior("Weibull", alpha=2, beta=1),
        "q": Prior("Weibull", alpha=2, beta=1),
        "v": Prior("Weibull", alpha=2, beta=10),
    }
)
spend_model.fit()

Note this will also require updating the GGM tutorial notebook.

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions