Skip to content

Commit

Permalink
[Algorithm] TD3 fast
Browse files Browse the repository at this point in the history
ghstack-source-id: 16037b74edf8c66efec9c5aad1d6713ff2635762
Pull Request resolved: #2389
  • Loading branch information
vmoens committed Aug 12, 2024
1 parent 406558e commit 17f0b44
Show file tree
Hide file tree
Showing 4 changed files with 381 additions and 33 deletions.
55 changes: 55 additions & 0 deletions sota-implementations/td3/config-fast.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# task and env
env:
name: HalfCheetah-v4 # Use v4 to get rid of mujoco-py dependency
task: ""
library: gymnasium
seed: 42
max_episode_steps: 1000

# collector
collector:
total_frames: 1000000
init_random_frames: 25_000
init_env_steps: 1000
frames_per_batch: 1000
reset_at_each_iter: False
device: cpu
env_per_collector: 1
num_workers: 8

# replay buffer
replay_buffer:
prb: 0 # use prioritized experience replay
size: 1000000
scratch_dir: null
device: null

# optim
optim:
utd_ratio: 1.0
gamma: 0.99
loss_function: l2
lr: 3.0e-4
weight_decay: 0.0
adam_eps: 1e-4
batch_size: 256
target_update_polyak: 0.995
policy_update_delay: 2
policy_noise: 0.2
noise_clip: 0.5

# network
network:
hidden_sizes: [256, 256]
activation: relu
device: null

# logging
logger:
backend: wandb
project_name: torchrl_example_td3
group_name: null
exp_name: ${env.name}_TD3
mode: online
eval_iter: 25000
video: False
246 changes: 246 additions & 0 deletions sota-implementations/td3/td3-fast.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""TD3 Example.
This is a simple self-contained example of a TD3 training script.
It supports state environments like MuJoCo.
The helper functions are coded in the utils.py associated with this script.
"""
import time

import hydra
import numpy as np
import torch
import torch.cuda
import tqdm
from torchrl._utils import logger as torchrl_logger
from torchrl.data.utils import CloudpickleWrapper

from torchrl.envs.utils import ExplorationType, set_exploration_type

from torchrl.record.loggers import generate_exp_name, get_logger
from utils import (
log_metrics,
make_async_collector,
make_environment,
make_loss_module,
make_optimizer,
make_replay_buffer,
make_simple_environment,
make_td3_agent,
)


@hydra.main(version_base="1.1", config_path="", config_name="config-fast")
def main(cfg: "DictConfig"): # noqa: F821
device = cfg.network.device
if device in ("", None):
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
device = torch.device(device)

# Create logger
exp_name = generate_exp_name("TD3", cfg.logger.exp_name)
logger = None
if cfg.logger.backend:
logger = get_logger(
logger_type=cfg.logger.backend,
logger_name="td3_logging",
experiment_name=exp_name,
wandb_kwargs={
"mode": cfg.logger.mode,
"config": dict(cfg),
"project": cfg.logger.project_name,
"group": cfg.logger.group_name,
},
)

# Set seeds
torch.manual_seed(cfg.env.seed)
np.random.seed(cfg.env.seed)

# Create environments
train_env, eval_env = make_environment(cfg, logger=logger)

# Create agent
model, exploration_policy = make_td3_agent(cfg, train_env, eval_env, device)

# Create TD3 loss
loss_module, target_net_updater = make_loss_module(cfg, model)

# Create replay buffer
replay_buffer = make_replay_buffer(
batch_size=cfg.optim.batch_size,
prb=cfg.replay_buffer.prb,
buffer_size=cfg.replay_buffer.size,
scratch_dir=cfg.replay_buffer.scratch_dir,
device=cfg.replay_buffer.device if cfg.replay_buffer.device else device,
prefetch=0,
mmap=False,
)
reshape = CloudpickleWrapper(lambda td: td.reshape(-1))
replay_buffer.append_transform(reshape, invert=True)

# Create off-policy collector
envname = cfg.env.name
task = cfg.env.task
library = cfg.env.library
seed = cfg.env.seed
max_episode_steps = cfg.env.max_episode_steps
collector = make_async_collector(
cfg,
lambda: make_simple_environment(
envname, task, library, seed, max_episode_steps
),
exploration_policy,
replay_buffer,
)

# Create optimizers
optimizer_actor, optimizer_critic = make_optimizer(cfg, loss_module)

# Main loop
start_time = time.time()
collected_frames = 0
pbar = tqdm.tqdm(total=cfg.collector.total_frames)

init_random_frames = cfg.collector.init_random_frames
num_updates = int(
max(1, cfg.collector.env_per_collector)
* cfg.collector.frames_per_batch
* cfg.optim.utd_ratio
)
delayed_updates = cfg.optim.policy_update_delay
prb = cfg.replay_buffer.prb
update_counter = 0

sampling_start = time.time()
current_frames = cfg.collector.frames_per_batch
update_actor = False

test_env = make_simple_environment(envname, task, library, seed, max_episode_steps)
with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad():
reward = test_env.rollout(10_000, exploration_policy)["next", "reward"].mean()
print(f"reward before training: {reward: 4.4f}")

# loss_module.value_loss = torch.compile(
# loss_module.value_loss, mode="reduce-overhead"
# )
# loss_module.actor_loss = torch.compile(
# loss_module.actor_loss, mode="reduce-overhead"
# )

def train_update(sampled_tensordict):
# Compute loss
q_loss, *_ = loss_module.value_loss(sampled_tensordict)

# Update critic
optimizer_critic.zero_grad()
q_loss.backward()
optimizer_critic.step()
q_losses.append(q_loss.item())

# Update actor
if update_actor:
actor_loss, *_ = loss_module.actor_loss(sampled_tensordict)
optimizer_actor.zero_grad()
actor_loss.backward()
optimizer_actor.step()

actor_losses.append(actor_loss.item())

# Update target params
target_net_updater.step()

train_update_cuda = None
g = torch.cuda.CUDAGraph()

for _ in collector:
sampling_time = time.time() - sampling_start
exploration_policy[1].step(current_frames)

# Update weights of the inference policy
collector.update_policy_weights_()

pbar.update(current_frames)

# Add to replay buffer
collected_frames += current_frames

# Optimization steps
training_start = time.time()

if collected_frames >= init_random_frames:
(
actor_losses,
q_losses,
) = ([], [])
for _ in range(num_updates):

# Update actor every delayed_updates
update_counter += 1
update_actor = update_counter % delayed_updates == 0

# Sample from replay buffer
sampled_tensordict = replay_buffer.sample()
if sampled_tensordict.device != device:
sampled_tensordict = sampled_tensordict.to(
device, non_blocking=True
)
else:
sampled_tensordict = sampled_tensordict.clone()

if train_update_cuda is None:
static_sample = sampled_tensordict
with torch.cuda.graph(g):
train_update(static_sample)

def train_update_cuda(x):
static_sample.copy_(x)
g.replay()
else:
train_update_cuda(sampled_tensordict)

# Update priority
if prb:
replay_buffer.update_priority(sampled_tensordict)

training_time = time.time() - training_start

# Logging
metrics_to_log = {}
if collected_frames >= init_random_frames:
metrics_to_log["train/q_loss"] = np.mean(q_losses)
if update_actor:
metrics_to_log["train/a_loss"] = np.mean(actor_losses)
metrics_to_log["train/sampling_time"] = sampling_time
metrics_to_log["train/training_time"] = training_time

if logger is not None:
log_metrics(logger, metrics_to_log, collected_frames)
sampling_start = time.time()

collector.shutdown()
if not eval_env.is_closed:
eval_env.close()
if not train_env.is_closed:
train_env.close()

with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad():
reward = test_env.rollout(10_000, exploration_policy)["next", "reward"].mean()
print(f"reward before training: {reward: 4.4f}")
test_env.close()

end_time = time.time()
execution_time = end_time - start_time
torchrl_logger.info(f"Training took {execution_time:.2f} seconds to finish")


if __name__ == "__main__":
main()
Loading

0 comments on commit 17f0b44

Please sign in to comment.