Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Expose transforms.v2 utils for writing custom transforms. #8670

Merged
merged 2 commits into from
Oct 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 47 additions & 0 deletions test/test_transforms_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -6169,3 +6169,50 @@ def test_transform_sequence_len_error(self, quality):
def test_transform_invalid_quality_error(self, quality):
with pytest.raises(ValueError, match="quality must be an integer from 1 to 100"):
transforms.JPEG(quality=quality)


class TestUtils:
# TODO: Still need to test has_all, has_any, check_type and get_bouding_boxes
@pytest.mark.parametrize(
"make_input1", [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask]
)
@pytest.mark.parametrize(
"make_input2", [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask]
)
@pytest.mark.parametrize("query", [transforms.query_size, transforms.query_chw])
def test_query_size_and_query_chw(self, make_input1, make_input2, query):
size = (32, 64)
input1 = make_input1(size)
input2 = make_input2(size)

if query is transforms.query_chw and not any(
transforms.check_type(inpt, (is_pure_tensor, tv_tensors.Image, PIL.Image.Image, tv_tensors.Video))
for inpt in (input1, input2)
):
return

expected = size if query is transforms.query_size else ((3,) + size)
assert query([input1, input2]) == expected

@pytest.mark.parametrize(
"make_input1", [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask]
)
@pytest.mark.parametrize(
"make_input2", [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask]
)
@pytest.mark.parametrize("query", [transforms.query_size, transforms.query_chw])
def test_different_sizes(self, make_input1, make_input2, query):
input1 = make_input1((10, 10))
input2 = make_input2((20, 20))
if query is transforms.query_chw and not all(
transforms.check_type(inpt, (is_pure_tensor, tv_tensors.Image, PIL.Image.Image, tv_tensors.Video))
for inpt in (input1, input2)
):
return
with pytest.raises(ValueError, match="Found multiple"):
query([input1, input2])

@pytest.mark.parametrize("query", [transforms.query_size, transforms.query_chw])
def test_no_valid_input(self, query):
with pytest.raises(TypeError, match="No image"):
query(["blah"])
1 change: 1 addition & 0 deletions torchvision/transforms/v2/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,5 +55,6 @@
)
from ._temporal import UniformTemporalSubsample
from ._type_conversion import PILToTensor, ToImage, ToPILImage, ToPureTensor
from ._utils import check_type, get_bounding_boxes, has_all, has_any, query_chw, query_size

from ._deprecated import ToTensor # usort: skip
Loading