Skip to content

Fix dtype parsing from vectorizer kwargs #237

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions redisvl/utils/vectorize/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,11 +81,13 @@ def batchify(self, seq: list, size: int, preprocess: Optional[Callable] = None):
else:
yield seq[pos : pos + size]

def _process_embedding(self, embedding: List[float], as_buffer: bool, **kwargs):
def _process_embedding(
self, embedding: List[float], as_buffer: bool, dtype: Optional[str]
):
if as_buffer:
if "dtype" not in kwargs:
if not dtype:
raise RuntimeError(
"dtype is required if converting from float to byte string."
)
return array_to_buffer(embedding, kwargs["dtype"])
return array_to_buffer(embedding, dtype)
return embedding
18 changes: 14 additions & 4 deletions redisvl/utils/vectorize/text/azureopenai.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,11 +190,13 @@ def embed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = self._client.embeddings.create(input=batch, model=self.model)
embeddings += [
self._process_embedding(r.embedding, as_buffer, **kwargs)
self._process_embedding(r.embedding, as_buffer, dtype)
for r in response.data
]
return embeddings
Expand Down Expand Up @@ -231,8 +233,11 @@ def embed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

result = self._client.embeddings.create(input=[text], model=self.model)
return self._process_embedding(result.data[0].embedding, as_buffer, **kwargs)
return self._process_embedding(result.data[0].embedding, as_buffer, dtype)

@retry(
wait=wait_random_exponential(min=1, max=60),
Expand Down Expand Up @@ -269,13 +274,15 @@ async def aembed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = await self._aclient.embeddings.create(
input=batch, model=self.model
)
embeddings += [
self._process_embedding(r.embedding, as_buffer, **kwargs)
self._process_embedding(r.embedding, as_buffer, dtype)
for r in response.data
]
return embeddings
Expand Down Expand Up @@ -312,8 +319,11 @@ async def aembed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

result = await self._aclient.embeddings.create(input=[text], model=self.model)
return self._process_embedding(result.data[0].embedding, as_buffer, **kwargs)
return self._process_embedding(result.data[0].embedding, as_buffer, dtype)

@property
def type(self) -> str:
Expand Down
10 changes: 8 additions & 2 deletions redisvl/utils/vectorize/text/cohere.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,12 +155,16 @@ def embed(
"Must pass in a str value for cohere embedding input_type. \
See https://docs.cohere.com/reference/embed."
)

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

embedding = self._client.embed(
texts=[text], model=self.model, input_type=input_type
).embeddings[0]
return self._process_embedding(embedding, as_buffer, **kwargs)
return self._process_embedding(embedding, as_buffer, dtype)

@retry(
wait=wait_random_exponential(min=1, max=60),
Expand Down Expand Up @@ -224,13 +228,15 @@ def embed_many(
See https://docs.cohere.com/reference/embed."
)

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = self._client.embed(
texts=batch, model=self.model, input_type=input_type
)
embeddings += [
self._process_embedding(embedding, as_buffer, **kwargs)
self._process_embedding(embedding, as_buffer, dtype)
for embedding in response.embeddings
]
return embeddings
Expand Down
24 changes: 16 additions & 8 deletions redisvl/utils/vectorize/text/custom.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,9 +172,11 @@ def embed(

if preprocess:
text = preprocess(text)
else:
result = self._embed_func(text, **kwargs)
return self._process_embedding(result, as_buffer, **kwargs)

dtype = kwargs.pop("dtype", None)

result = self._embed_func(text, **kwargs)
return self._process_embedding(result, as_buffer, dtype)

def embed_many(
self,
Expand Down Expand Up @@ -210,11 +212,13 @@ def embed_many(
if not self._embed_many_func:
raise NotImplementedError

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
results = self._embed_many_func(batch, **kwargs)
embeddings += [
self._process_embedding(r, as_buffer, **kwargs) for r in results
self._process_embedding(r, as_buffer, dtype) for r in results
]
return embeddings

Expand Down Expand Up @@ -249,9 +253,11 @@ async def aembed(

if preprocess:
text = preprocess(text)
else:
result = await self._aembed_func(text, **kwargs)
return self._process_embedding(result, as_buffer, **kwargs)

dtype = kwargs.pop("dtype", None)

result = await self._aembed_func(text, **kwargs)
return self._process_embedding(result, as_buffer, dtype)

async def aembed_many(
self,
Expand Down Expand Up @@ -287,11 +293,13 @@ async def aembed_many(
if not self._aembed_many_func:
raise NotImplementedError

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
results = await self._aembed_many_func(batch, **kwargs)
embeddings += [
self._process_embedding(r, as_buffer, **kwargs) for r in results
self._process_embedding(r, as_buffer, dtype) for r in results
]
return embeddings

Expand Down
9 changes: 7 additions & 2 deletions redisvl/utils/vectorize/text/huggingface.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,8 +99,11 @@ def embed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

embedding = self._client.encode([text], **kwargs)[0]
return self._process_embedding(embedding.tolist(), as_buffer, **kwargs)
return self._process_embedding(embedding.tolist(), as_buffer, dtype)

def embed_many(
self,
Expand Down Expand Up @@ -133,12 +136,14 @@ def embed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
batch_embeddings = self._client.encode(batch, **kwargs)
embeddings.extend(
[
self._process_embedding(embedding.tolist(), as_buffer, **kwargs)
self._process_embedding(embedding.tolist(), as_buffer, dtype)
for embedding in batch_embeddings
]
)
Expand Down
18 changes: 14 additions & 4 deletions redisvl/utils/vectorize/text/mistral.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,11 +140,13 @@ def embed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = self._client.embeddings(model=self.model, input=batch)
embeddings += [
self._process_embedding(r.embedding, as_buffer, **kwargs)
self._process_embedding(r.embedding, as_buffer, dtype)
for r in response.data
]
return embeddings
Expand Down Expand Up @@ -181,8 +183,11 @@ def embed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

result = self._client.embeddings(model=self.model, input=[text])
return self._process_embedding(result.data[0].embedding, as_buffer, **kwargs)
return self._process_embedding(result.data[0].embedding, as_buffer, dtype)

@retry(
wait=wait_random_exponential(min=1, max=60),
Expand Down Expand Up @@ -219,11 +224,13 @@ async def aembed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = await self._aclient.embeddings(model=self.model, input=batch)
embeddings += [
self._process_embedding(r.embedding, as_buffer, **kwargs)
self._process_embedding(r.embedding, as_buffer, dtype)
for r in response.data
]
return embeddings
Expand Down Expand Up @@ -260,8 +267,11 @@ async def aembed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

result = await self._aclient.embeddings(model=self.model, input=[text])
return self._process_embedding(result.data[0].embedding, as_buffer, **kwargs)
return self._process_embedding(result.data[0].embedding, as_buffer, dtype)

@property
def type(self) -> str:
Expand Down
18 changes: 14 additions & 4 deletions redisvl/utils/vectorize/text/openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,11 +144,13 @@ def embed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = self._client.embeddings.create(input=batch, model=self.model)
embeddings += [
self._process_embedding(r.embedding, as_buffer, **kwargs)
self._process_embedding(r.embedding, as_buffer, dtype)
for r in response.data
]
return embeddings
Expand Down Expand Up @@ -185,8 +187,11 @@ def embed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

result = self._client.embeddings.create(input=[text], model=self.model)
return self._process_embedding(result.data[0].embedding, as_buffer, **kwargs)
return self._process_embedding(result.data[0].embedding, as_buffer, dtype)

@retry(
wait=wait_random_exponential(min=1, max=60),
Expand Down Expand Up @@ -223,13 +228,15 @@ async def aembed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = await self._aclient.embeddings.create(
input=batch, model=self.model
)
embeddings += [
self._process_embedding(r.embedding, as_buffer, **kwargs)
self._process_embedding(r.embedding, as_buffer, dtype)
for r in response.data
]
return embeddings
Expand Down Expand Up @@ -266,8 +273,11 @@ async def aembed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

result = await self._aclient.embeddings.create(input=[text], model=self.model)
return self._process_embedding(result.data[0].embedding, as_buffer, **kwargs)
return self._process_embedding(result.data[0].embedding, as_buffer, dtype)

@property
def type(self) -> str:
Expand Down
9 changes: 7 additions & 2 deletions redisvl/utils/vectorize/text/vertexai.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,11 +151,13 @@ def embed_many(
if len(texts) > 0 and not isinstance(texts[0], str):
raise TypeError("Must pass in a list of str values to embed.")

dtype = kwargs.pop("dtype", None)

embeddings: List = []
for batch in self.batchify(texts, batch_size, preprocess):
response = self._client.get_embeddings(batch)
embeddings += [
self._process_embedding(r.values, as_buffer, **kwargs) for r in response
self._process_embedding(r.values, as_buffer, dtype) for r in response
]
return embeddings

Expand Down Expand Up @@ -191,8 +193,11 @@ def embed(

if preprocess:
text = preprocess(text)

dtype = kwargs.pop("dtype", None)

result = self._client.get_embeddings([text])
return self._process_embedding(result[0].values, as_buffer, **kwargs)
return self._process_embedding(result[0].values, as_buffer, dtype)

@property
def type(self) -> str:
Expand Down
Loading