Skip to content

2D Feature Tracking using various Detectors and Descriptors in Computer Vision

License

Notifications You must be signed in to change notification settings

saishiva024/Camera-Feature-Tracking-2D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SFND 2D Feature Tracking

The idea of the camera course is to build a collision detection system - that's the overall goal for the Final Project. As a preparation for this, you will now build the feature tracking part and test various detector / descriptor combinations to see which ones perform best. This mid-term project consists of four parts:

  • First, you will focus on loading images, setting up data structures and putting everything into a ring buffer to optimize memory load.
  • Then, you will integrate several keypoint detectors such as HARRIS, FAST, BRISK and SIFT and compare them with regard to number of keypoints and speed.
  • In the next part, you will then focus on descriptor extraction and matching using brute force and also the FLANN approach we discussed in the previous lesson.
  • In the last part, once the code framework is complete, you will test the various algorithms in different combinations and compare them with regard to some performance measures.

See the classroom instruction and code comments for more details on each of these parts. Once you are finished with this project, the keypoint matching part will be set up and you can proceed to the next lesson, where the focus is on integrating Lidar points and on object detection using deep-learning.

Dependencies for Running Locally

Basic Build Instructions

  1. Clone this repo.
  2. Make a build directory in the top level directory: mkdir build && cd build
  3. Compile: cmake .. && make
  4. Run it: ./2D_feature_tracking.

Project Submission

Plese take a look at README.pdf which contain description of analysis. Analysis.pdf contains all the data anaylsis part of different algorithms. Based on analysis, Top 3 algorithms are

  1. FAST+BRIEF
  2. FAST+ORB
  3. BRISK+BRIEF

About

2D Feature Tracking using various Detectors and Descriptors in Computer Vision

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published