Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Context metadata adjusted for the transformed datetime sdtype #2127

Merged
merged 7 commits into from
Jul 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions sdv/sequential/par.py
Original file line number Diff line number Diff line change
Expand Up @@ -344,6 +344,12 @@ def _fit_context_model(self, transformed):
context[constant_column] = 0
context_metadata.add_column(constant_column, sdtype='numerical')

for column in self.context_columns:
# Context datetime SDTypes for PAR have already been converted to float timestamp
if context_metadata.columns[column]['sdtype'] == 'datetime':
if pd.api.types.is_numeric_dtype(context[column]):
context_metadata.update_column(column, sdtype='numerical')
lajohn4747 marked this conversation as resolved.
Show resolved Hide resolved

self._context_synthesizer = GaussianCopulaSynthesizer(
context_metadata,
enforce_min_max_values=self._context_synthesizer.enforce_min_max_values,
Expand Down
34 changes: 34 additions & 0 deletions tests/integration/sequential/test_par.py
Original file line number Diff line number Diff line change
Expand Up @@ -406,6 +406,40 @@ def test_init_error_sequence_key_in_context():
PARSynthesizer(metadata, context_columns=['A'])


def test_par_with_datetime_context():
"""Test PARSynthesizer with a datetime as a context column"""
# Setup
data = pd.DataFrame(
data={
'user_id': ['ID_00'] * 5 + ['ID_01'] * 5,
'birthdate': ['1995-05-06'] * 5 + ['1982-01-21'] * 5,
'timestamp': ['2023-06-21', '2023-06-22', '2023-06-23', '2023-06-24', '2023-06-25'] * 2,
'heartrate': [67, 66, 68, 65, 64, 80, 82, 91, 88, 84],
}
)

metadata = SingleTableMetadata.load_from_dict({
'columns': {
'user_id': {'sdtype': 'id', 'regex_format': 'ID_[0-9]{2}'},
'birthdate': {'sdtype': 'datetime', 'datetime_format': '%Y-%m-%d'},
'timestamp': {'sdtype': 'datetime', 'datetime_format': '%Y-%m-%d'},
'heartrate': {'sdtype': 'numerical'},
},
'sequence_key': 'user_id',
'sequence_index': 'timestamp',
})

# Run
synth = PARSynthesizer(metadata, epochs=50, verbose=True, context_columns=['birthdate'])

synth.fit(data)
sample = synth.sample(num_sequences=1)
expected_birthdate = pd.Series(['1984-02-23'] * 5, name='birthdate')

# Assert
pd.testing.assert_series_equal(sample['birthdate'], expected_birthdate)


def test_par_categorical_column_represented_by_floats():
"""Test to see if categorical columns work fine with float representation."""
# Setup
Expand Down
44 changes: 43 additions & 1 deletion tests/unit/sequential/test_par.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,22 +444,64 @@ def test__fit_context_model_with_context_columns(self, gaussian_copula_mock):
'columns': {'gender': {'sdtype': 'categorical'}, 'name': {'sdtype': 'id'}}
})
par._context_synthesizer = initial_synthesizer
par._get_context_metadata = Mock(return_value=context_metadata)

# Run
par._fit_context_model(data)

# Assert
gaussian_copula_mock.assert_called_with(
context_metadata,
enforce_min_max_values=initial_synthesizer.enforce_min_max_values,
enforce_rounding=initial_synthesizer.enforce_rounding,
)
fitted_data = gaussian_copula_mock().fit.mock_calls[0][1][0]
expected_fitted_data = pd.DataFrame({
'name': ['Doe', 'Jane', 'John'],
'gender': ['M', 'F', 'M'],
})
pd.testing.assert_frame_equal(fitted_data.sort_values(by='name'), expected_fitted_data)

@patch('sdv.sequential.par.GaussianCopulaSynthesizer')
def test__fit_context_model_with_datetime_context_column(self, gaussian_copula_mock):
"""Test that the method fits a synthesizer to the context columns.

If there are context columns, the method should create a new DataFrame that groups
the data by the sequence_key and only contains the context columns. Then a synthesizer
should be fit to this new data.
"""
# Setup
metadata = self.get_metadata()
data = self.get_data()
data['time'] = pd.to_datetime(data['time'])
data['time'] = data['time'].apply(lambda x: x.timestamp())
par = PARSynthesizer(metadata, context_columns=['time'])
initial_synthesizer = Mock()
context_metadata = SingleTableMetadata.load_from_dict({
'columns': {'time': {'sdtype': 'datetime'}, 'name': {'sdtype': 'id'}}
})
par._context_synthesizer = initial_synthesizer
par._get_context_metadata = Mock()
par._get_context_metadata.return_value = context_metadata

# Run
par._fit_context_model(data)

converted_context_metadata = SingleTableMetadata.load_from_dict({
'columns': {'time': {'sdtype': 'numerical'}, 'name': {'sdtype': 'id'}}
})

# Assert
gaussian_copula_mock.assert_called_with(
context_metadata,
enforce_min_max_values=initial_synthesizer.enforce_min_max_values,
enforce_rounding=initial_synthesizer.enforce_rounding,
)
assert converted_context_metadata.columns == context_metadata.columns
fitted_data = gaussian_copula_mock().fit.mock_calls[0][1][0]
expected_fitted_data = pd.DataFrame({
'name': ['Doe', 'Jane', 'John'],
'gender': ['M', 'F', 'M'],
'time': [1.578010e09, 1.577837e09, 1.577923e09],
})
pd.testing.assert_frame_equal(fitted_data.sort_values(by='name'), expected_fitted_data)

Expand Down
Loading