Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Conditional sampling using GaussianCopula inefficient when categories are noised #912

Merged
merged 1 commit into from
Jul 19, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 14 additions & 12 deletions sdv/tabular/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -580,18 +580,9 @@ def _sample_with_conditions(self, conditions, max_tries_per_batch, batch_size,
* any of the conditions' columns are not valid.
* no rows could be generated.
"""
try:
transformed_conditions = self._metadata.transform(conditions, is_condition=True)
except ConstraintsNotMetError as cnme:
cnme.message = 'Provided conditions are not valid for the given constraints'
raise

condition_columns = list(conditions.columns)
transformed_columns = list(transformed_conditions.columns)
conditions.index.name = COND_IDX
conditions.reset_index(inplace=True)
transformed_conditions.index.name = COND_IDX
transformed_conditions.reset_index(inplace=True)
grouped_conditions = conditions.groupby(condition_columns)

# sample
Expand All @@ -601,8 +592,20 @@ def _sample_with_conditions(self, conditions, max_tries_per_batch, batch_size,
if not isinstance(group, tuple):
group = [group]

condition_indices = dataframe[COND_IDX]
condition = dict(zip(condition_columns, group))
condition_df = dataframe.iloc[0].to_frame().T
try:
transformed_condition = self._metadata.transform(condition_df, is_condition=True)
except ConstraintsNotMetError as cnme:
cnme.message = 'Provided conditions are not valid for the given constraints'
raise
transformed_conditions = pd.concat(
[transformed_condition] * len(dataframe),
ignore_index=True
)
transformed_columns = list(transformed_conditions.columns)
transformed_conditions[COND_IDX] = dataframe[COND_IDX]

if len(transformed_columns) == 0:
sampled_rows = self._conditionally_sample_rows(
dataframe=dataframe,
Expand All @@ -615,8 +618,7 @@ def _sample_with_conditions(self, conditions, max_tries_per_batch, batch_size,
)
all_sampled_rows.append(sampled_rows)
else:
transformed_conditions_in_group = transformed_conditions.loc[condition_indices]
transformed_groups = transformed_conditions_in_group.groupby(transformed_columns)
transformed_groups = transformed_conditions.groupby(transformed_columns)
for transformed_group, transformed_dataframe in transformed_groups:
if not isinstance(transformed_group, tuple):
transformed_group = [transformed_group]
Expand Down
32 changes: 10 additions & 22 deletions tests/unit/tabular/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1041,7 +1041,7 @@ def test__sample_with_conditions_empty_transformed_conditions():
conditions = {
'column1': 25
}
conditions_series = pd.Series([25, 25, 25, 25, 25], name='column1')
conditions_series = pd.Series([25], name='column1')
model._sample_batch = Mock()
sampled = pd.DataFrame({
'column1': [28, 28],
Expand Down Expand Up @@ -1102,7 +1102,6 @@ def test__sample_with_conditions_transform_conditions_correctly():
})

condition_values = [25, 25, 25, 30, 30]
conditions_series = pd.Series([25, 25, 25, 30, 30], name='column1')
model._sample_batch = Mock()
expected_outputs = [
pd.DataFrame({
Expand All @@ -1113,28 +1112,26 @@ def test__sample_with_conditions_transform_conditions_correctly():
'column1': [30],
'column2': [37],
'column3': [93],
}), pd.DataFrame({
'column1': [30],
'column2': [37],
'column3': [93],
})
]
model._sample_batch.side_effect = expected_outputs
model.fit(data)
model._metadata = Mock()
model._metadata.get_fields.return_value = ['column1', 'column2', 'column3']
model._metadata.transform.return_value = pd.DataFrame([
[50], [50], [50], [60], [70]
], columns=['transformed_column'])
model._metadata.transform.side_effect = [
pd.DataFrame([[50]], columns=['transformed_column']),
pd.DataFrame([[60]], columns=['transformed_column'])
]

# Run
model._sample_with_conditions(
pd.DataFrame({'column1': condition_values}), 100, None)

# Assert
_, args, kwargs = model._metadata.transform.mock_calls[0]
pd.testing.assert_series_equal(args[0]['column1'], conditions_series)
model._metadata.transform.assert_called_once()
first_condition = model._metadata.transform.mock_calls[0][1][0]['column1']
second_condition = model._metadata.transform.mock_calls[1][1][0]['column1']
pd.testing.assert_series_equal(first_condition, pd.Series([25], name='column1'))
pd.testing.assert_series_equal(second_condition, pd.Series([30], name='column1', index=[3]))
model._sample_batch.assert_any_call(
batch_size=3,
max_tries=100,
Expand All @@ -1145,23 +1142,14 @@ def test__sample_with_conditions_transform_conditions_correctly():
output_file_path=None
)
model._sample_batch.assert_any_call(
batch_size=1,
batch_size=2,
max_tries=100,
conditions={'column1': 30},
transformed_conditions={'transformed_column': 60},
float_rtol=0.01,
progress_bar=None,
output_file_path=None
)
model._sample_batch.assert_any_call(
batch_size=1,
max_tries=100,
conditions={'column1': 30},
transformed_conditions={'transformed_column': 70},
float_rtol=0.01,
progress_bar=None,
output_file_path=None
)


@pytest.mark.parametrize('model', MODELS)
Expand Down