-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Add support for model comparison in what-if plugin v1 #1589
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
19 commits
Select commit
Hold shift + click to select a range
f646272
adding support for multiple models, works, not complete
tolga-b c059585
switch middle
tolga-b 56212ae
Merged with head
tolga-b be46b26
multi-demo working again
tolga-b a83d3e3
servo inference works with multiple models
tolga-b 81c5700
fixed settings panel, rest partially works with multiple models
tolga-b 2843d2d
model comparison working, demos not updated
tolga-b df3fdb6
classification demos working, regression broken
tolga-b db15125
regression demo works
tolga-b 8699ad1
Sync to master branch
tolga-b ff8915a
Remove ignored directory .vscode
tolga-b 335d2ce
Adding changes for PR except for multidemo
tolga-b 302a301
multidemo now uses two real models
tolga-b bc69676
fixed triggering updateInferenceStats before examplesAndInferences[..…
tolga-b c92203a
Adding licence to multidemo
tolga-b 35b7d28
update test to fix issues with new model_version and model_signature …
tolga-b 88ec3f5
fixing issue with xrange in py3
tolga-b 4d44c54
Handle exceptions for multiple model address and names
tolga-b 9cbab27
minor spacing fix
tolga-b File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
194 changes: 193 additions & 1 deletion
194
...plugins/interactive_inference/tf_interactive_inference_dashboard/demo/data/uci/model.json
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1 +1,193 @@ | ||
| {"modelTopology": {"training_config": {"metrics": [], "loss": "binary_crossentropy", "optimizer_config": {"class_name": "RMSprop", "config": {"epsilon": 1e-07, "lr": 0.0010000000474974513, "rho": 0.8999999761581421, "decay": 0.0}}, "sample_weight_mode": null, "loss_weights": null}, "keras_version": "2.1.4", "model_config": {"class_name": "Sequential", "config": [{"class_name": "Dense", "config": {"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale": 1.0, "seed": null, "mode": "fan_avg"}}, "name": "dense_1", "kernel_constraint": null, "bias_regularizer": null, "bias_constraint": null, "dtype": "float32", "activation": "sigmoid", "trainable": true, "kernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 36, "batch_input_shape": [null, 104], "use_bias": true, "activity_regularizer": null}}, {"class_name": "Dense", "config": {"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale": 1.0, "seed": null, "mode": "fan_avg"}}, "name": "dense_2", "kernel_constraint": null, "bias_regularizer": null, "bias_constraint": null, "dtype": "float32", "activation": "sigmoid", "trainable": true, "kernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 12, "batch_input_shape": [null, 36], "use_bias": true, "activity_regularizer": null}}, {"class_name": "Dense", "config": {"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale": 1.0, "seed": null, "mode": "fan_avg"}}, "name": "dense_3", "kernel_constraint": null, "bias_regularizer": null, "bias_constraint": null, "dtype": "float32", "activation": "sigmoid", "trainable": true, "kernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 2, "batch_input_shape": [null, 12], "use_bias": true, "activity_regularizer": null}}]}, "backend": "tensorflow"}, "weightsManifest": [{"paths": ["group1-shard1of1"], "weights": [{"dtype": "float32", "shape": [104, 36], "name": "dense_1/kernel"}, {"dtype": "float32", "shape": [36], "name": "dense_1/bias"}]}, {"paths": ["group2-shard1of1"], "weights": [{"dtype": "float32", "shape": [36, 12], "name": "dense_2/kernel"}, {"dtype": "float32", "shape": [12], "name": "dense_2/bias"}]}, {"paths": ["group3-shard1of1"], "weights": [{"dtype": "float32", "shape": [12, 2], "name": "dense_3/kernel"}, {"dtype": "float32", "shape": [2], "name": "dense_3/bias"}]}]} | ||
| { | ||
| "modelTopology": { | ||
| "training_config": { | ||
| "metrics": [], | ||
| "loss": "binary_crossentropy", | ||
| "optimizer_config": { | ||
| "class_name": "RMSprop", | ||
| "config": { | ||
| "epsilon": 1E-7, | ||
| "lr": 0.0010000000474974513, | ||
| "rho": 0.8999999761581421, | ||
| "decay": 0.0 | ||
| } | ||
| }, | ||
| "sample_weight_mode": null, | ||
| "loss_weights": null | ||
| }, | ||
| "keras_version": "2.1.4", | ||
| "model_config": { | ||
| "class_name": "Sequential", | ||
| "config": [ | ||
| { | ||
| "class_name": "Dense", | ||
| "config": { | ||
| "kernel_initializer": { | ||
| "class_name": "VarianceScaling", | ||
| "config": { | ||
| "distribution": "uniform", | ||
| "scale": 1.0, | ||
| "seed": null, | ||
| "mode": "fan_avg" | ||
| } | ||
| }, | ||
| "name": "dense_1", | ||
| "kernel_constraint": null, | ||
| "bias_regularizer": null, | ||
| "bias_constraint": null, | ||
| "dtype": "float32", | ||
| "activation": "sigmoid", | ||
| "trainable": true, | ||
| "kernel_regularizer": null, | ||
| "bias_initializer": { | ||
| "class_name": "Zeros", | ||
| "config": {} | ||
| }, | ||
| "units": 36, | ||
| "batch_input_shape": [ | ||
| null, | ||
| 104 | ||
| ], | ||
| "use_bias": true, | ||
| "activity_regularizer": null | ||
| } | ||
| }, | ||
| { | ||
| "class_name": "Dense", | ||
| "config": { | ||
| "kernel_initializer": { | ||
| "class_name": "VarianceScaling", | ||
| "config": { | ||
| "distribution": "uniform", | ||
| "scale": 1.0, | ||
| "seed": null, | ||
| "mode": "fan_avg" | ||
| } | ||
| }, | ||
| "name": "dense_2", | ||
| "kernel_constraint": null, | ||
| "bias_regularizer": null, | ||
| "bias_constraint": null, | ||
| "dtype": "float32", | ||
| "activation": "sigmoid", | ||
| "trainable": true, | ||
| "kernel_regularizer": null, | ||
| "bias_initializer": { | ||
| "class_name": "Zeros", | ||
| "config": {} | ||
| }, | ||
| "units": 12, | ||
| "batch_input_shape": [ | ||
| null, | ||
| 36 | ||
| ], | ||
| "use_bias": true, | ||
| "activity_regularizer": null | ||
| } | ||
| }, | ||
| { | ||
| "class_name": "Dense", | ||
| "config": { | ||
| "kernel_initializer": { | ||
| "class_name": "VarianceScaling", | ||
| "config": { | ||
| "distribution": "uniform", | ||
| "scale": 1.0, | ||
| "seed": null, | ||
| "mode": "fan_avg" | ||
| } | ||
| }, | ||
| "name": "dense_3", | ||
| "kernel_constraint": null, | ||
| "bias_regularizer": null, | ||
| "bias_constraint": null, | ||
| "dtype": "float32", | ||
| "activation": "sigmoid", | ||
| "trainable": true, | ||
| "kernel_regularizer": null, | ||
| "bias_initializer": { | ||
| "class_name": "Zeros", | ||
| "config": {} | ||
| }, | ||
| "units": 2, | ||
| "batch_input_shape": [ | ||
| null, | ||
| 12 | ||
| ], | ||
| "use_bias": true, | ||
| "activity_regularizer": null | ||
| } | ||
| } | ||
| ] | ||
| }, | ||
| "backend": "tensorflow" | ||
| }, | ||
| "weightsManifest": [ | ||
| { | ||
| "paths": [ | ||
| "group1-shard1of1" | ||
| ], | ||
| "weights": [ | ||
| { | ||
| "dtype": "float32", | ||
| "shape": [ | ||
| 104, | ||
| 36 | ||
| ], | ||
| "name": "dense_1/kernel" | ||
| }, | ||
| { | ||
| "dtype": "float32", | ||
| "shape": [ | ||
| 36 | ||
| ], | ||
| "name": "dense_1/bias" | ||
| } | ||
| ] | ||
| }, | ||
| { | ||
| "paths": [ | ||
| "group2-shard1of1" | ||
| ], | ||
| "weights": [ | ||
| { | ||
| "dtype": "float32", | ||
| "shape": [ | ||
| 36, | ||
| 12 | ||
| ], | ||
| "name": "dense_2/kernel" | ||
| }, | ||
| { | ||
| "dtype": "float32", | ||
| "shape": [ | ||
| 12 | ||
| ], | ||
| "name": "dense_2/bias" | ||
| } | ||
| ] | ||
| }, | ||
| { | ||
| "paths": [ | ||
| "group3-shard1of1" | ||
| ], | ||
| "weights": [ | ||
| { | ||
| "dtype": "float32", | ||
| "shape": [ | ||
| 12, | ||
| 2 | ||
| ], | ||
| "name": "dense_3/kernel" | ||
| }, | ||
| { | ||
| "dtype": "float32", | ||
| "shape": [ | ||
| 2 | ||
| ], | ||
| "name": "dense_3/bias" | ||
| } | ||
| ] | ||
| } | ||
| ] | ||
| } |
Binary file added
BIN
+16.6 KB
...erence/tf_interactive_inference_dashboard/demo/data/uci/model_comparison/group1-shard1of1
Binary file not shown.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.