-
Notifications
You must be signed in to change notification settings - Fork 13
QVAC-3697: Load GGUF File From Buffer #1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
QVAC-3697: Load GGUF File From Buffer #1
Conversation
Convert llama_file to a pure virtual class that can be overriden by multiple implementations (disk, single memory buffer, ...)
Define a new macro LLAMA_LOG_CMAKE_DEBUG that results in no-op when a release build is activated. This will allow to have a good trace and debugging capabilities that will be specially useful for the async loading of multiple model shards.
This change adds an additional automated test loading from disk, to ensure the existing functionallity does not break.
The gguf-split utility now generates a `.txt` listing all tensors. Useful both for manual inspection/debugging and for incremental tensor loading where its not possible to know tensors present in other split files (the information is critical to handle optional tensors).
I seem to lack permissions to add reviewers. It is on draft until I test it on a bare Addon but the review of the Llama.cpp C++ code can start: @olyasir @olek-tether @gianni-cor @chetasr @yuranich @jpgaribotti |
02227e3
to
0718c30
Compare
Updated tests to automatically skip based on the gguf filename (sharded or not) when running all tests at once. |
5df4e25
to
52ed642
Compare
Un-drafting since I was able to run JS integration test for qwen3 llm Addon without problems. The test now can use any dataloader implementation and will incrementally load the Llama.cpp model. See successful log below. |
We should not merge to master, it will make maintaining the fork more difficult. For example, we currently have another PR to merge from upstream to bring the fork up to date. We should create a differently named branch for our changes to the fork. |
can we do the following:
|
Fine with me. Please create a tether branch where to merge the changes @yuranich
I have a task in the Asana the project to do this, but I don't know how easy will it be with the amount of changes. Maybe we can merge some of the commits. |
temp-load-from-buffer |
52ed642
to
85405d9
Compare
4277f06
to
4d263be
Compare
- Ensures a char trait implementation for uint8 exists, that can be used with std::basic_streambuff. - Adds an implementation of std::basic_streambuff for a single vector. Will be used by llama.cpp and tests when loading from a single memory buffer.
Override the pure virtual interface with a class that can operate on a single memory buffer.
Auxiliary function to convert a list of C strings to a vector of C++ strings.
Add new GGUF reader implementation that can read metadata from a memory buffer.
- Add code to be able to load a gguf file from a variant (memory or disk). - Some structs simplify how to load a file and keep track of the pointers (which are now in the same struct).
Move the loader code, that process a file after it has been loaded into memory and populate its own attributes, to a reusable method.
Add new C++ function to Llama main header to load from a single memory buffer, and propagate changes to internal calls/constructors.
A file buffer that can be fulfilled using string keys. The extract method waits until the file is provided.
Handles the logic for incrementally loading files and tensors is model shards.
Refactor backend buffer creation (for model loading) into functions.
- The function now takes size_data instead of the member attribute. - Sanity checks of file pointer handles These two changes will be useful when calling `load_all_data` multiple times during incremental shard load.
Adapt the loader and model load to incrementally load files and upload tensors.
Add functions to Llama.cpp public headers to asynchronously load shards.
Split some common loading functionallity. This will help in the memory loading tests.
Add a submodule with re-usable code for tests.
Adapt embedding example to showcase how to load from memory. Can be configured through environment variables.
Adapt simple example to showcase how to load from memory. Can be configured with environment variables. Qwen3, for example, can be used with the simple example.
Add some automatic tests that load from memory (single buffer or multiple async splits)
4d263be
to
cd1b485
Compare
Most CI pipelines pass now. Some target failures seem unrelated. |
@jpgaribotti @yuranich Can you suggest what to do with remaining failing CI pipelines? Seem to be due to unrelated issues, for example:
Is it okay to proceed with the review as it is? Currently even the sync to upstream is failing on CI #4 |
bfa84c3
into
tetherto:temp-load-from-buffer
* oai moe * compat with new checkpoint * add attn sink impl * add rope scaling yarn * logits match with latest transformers code * wip chat template * rm trailing space * use ggml_scale_bias * rm redundant is_swa_all * convert interleaved gate_up * graph : fix activation function to match reference (#7) * vocab : handle o200k_harmony special tokens * ggml : add attention sinks support (#1) * llama : add attn sinks * ggml : add attn sinks * cuda : add attn sinks * vulkan : add support for sinks in softmax remove unnecessary return * ggml : add fused swiglu_oai op (#11) * ggml : add fused swiglu_oai op * Update ggml/src/ggml-cpu/ops.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update CUDA impl * cont : metal impl * add vulkan impl * test-backend-ops : more test cases, clean up * llama : remove unfused impl * remove extra lines --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com> * repack mxfp4 upon conversion * clean up a bit * enable thinking * add quick hack to render only some special tokens * fix bf16 conversion * remove vocab hack * webui ok * support chat parsing for gpt-oss * fix webui * direct mapping mxfp4, FINALLY * force using mxfp4 * properly use lazy tensor * ggml : add mxfp4 ggml : use e8m0 conversion instead of powf Co-authored-by: Diego Devesa <slarengh@gmail.com> change kvalues_mxfp4 table to match e2m1 (#6) metal : remove quantization for now (not used) cuda : fix disabled CUDA graphs due to ffn moe bias vulkan : add support for mxfp4 cont : add cm2 dequant * ggml : add ggml_add_id (#13) * ggml : add ggml_add_id * add cuda impl * llama : add weight support check for add_id * perf opt * add vulkan impl * rename cuda files * add metal impl * allow in-place ggml_add_id * llama : keep biases on CPU with --cpu-moe * llama : fix compile error ggml-ci * cuda : add fallback for __nv_cvt_e8m0_to_bf16raw ggml-ci * cleanup ggml-ci * sycl : fix supports_op for MXFP4 ggml-ci * fix Unknown reasoning format * ggml-cpu : fix AVX build ggml-ci * fix hip build ggml-ci * cuda : add mxfp4 dequantization support for cuBLAS ggml-ci * ggml-cpu : fix mxfp4 fallback definitions for some architectures ggml-ci * cuda : fix version required for __nv_cvt_e8m0_to_bf16raw --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co> Co-authored-by: slaren <slarengh@gmail.com>
…gml-org#16038) Initalizing RESERVED_NAME in is_reserved_name() is not thread safe and leads to corrupted memory when used from multiple threads as can be seen in the asan trace below. This fixes the initialization to make it thread-safe. #0 0x000100abd018 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) __hash_table:1565 tetherto#1 0x000100ab0320 in SchemaConverter::visit(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) json-schema-to-grammar.cpp:802 tetherto#2 0x000100aafc48 in std::__1::__function::__func<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2, std::__1::allocator<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319 tetherto#3 0x000100a2c938 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&), std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>, void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319 tetherto#4 0x000100a139f8 in foreach_function(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::function<void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)> const&) chat.cpp:762 tetherto#5 0x000100a2a7f4 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0, std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0>, void (common_grammar_builder const&)>::operator()(common_grammar_builder const&) function.h:319 tetherto#6 0x000100aa98f4 in build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&) json-schema-to-grammar.cpp:982 tetherto#7 0x0001009c9314 in common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool) chat.cpp:1110 tetherto#8 0x0001009b8afc in common_chat_templates_apply_jinja(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:1992 tetherto#9 0x0001009b533c in common_chat_templates_apply(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:2074 tetherto#10 0x000100810120 in llamacpp_apply_chat_template+0x724 (predict_oai-98384e17fb94e863:arm64+0x100090120) ... ==45482==Register values: x[0] = 0x00006020004147f8 x[1] = 0x00006080000013c8 x[2] = 0x0000000000000000 x[3] = 0x0000604006289738 x[4] = 0x0000000000000002 x[5] = 0x0000000000000001 x[6] = 0x04034000004b4000 x[7] = 0x0000000000000001 x[8] = 0xbebebebebebebebe x[9] = 0x17d7d7d7d7d7d7d7 x[10] = 0x00000c04000828ff x[11] = 0x0000000000000001 x[12] = 0x000000002018d383 x[13] = 0x0000000000000000 x[14] = 0xfa0000000000fafa x[15] = 0x000010700001ffff x[16] = 0x000000019dc012c0 x[17] = 0x00000001021284f8 x[18] = 0x0000000000000000 x[19] = 0x00000001700acdc0 x[20] = 0x0000000000000002 x[21] = 0x000000002018d384 x[22] = 0x16dd16fd2e731151 x[23] = 0x0000007000020000 x[24] = 0x0000000100c69c08 x[25] = 0x0000000100c69c20 x[26] = 0x00006080000013c7 x[27] = 0x0000000100c69c00 x[28] = 0x00000001700acd60 fp = 0x00000001700aceb0 lr = 0x0000000100abce30 sp = 0x00000001700acd60 AddressSanitizer can not provide additional info. SUMMARY: AddressSanitizer: SEGV __hash_table:1565 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) Thread T5 created by T0 here: #0 0x0001020b99d4 in pthread_create+0x5c (libclang_rt.asan_osx_dynamic.dylib:arm64e+0x359d4) tetherto#1 0x000100873910 in std::sys::pal::unix::thread::Thread::new::h77254fdd87a28e05+0x118 (predict_oai-98384e17fb94e863:arm64+0x1000f3910) tetherto#2 0x0001007c7a1c in test::run_test::haeb3c2bcd5ed6cf6+0x76c (predict_oai-98384e17fb94e863:arm64+0x100047a1c) tetherto#3 0x0001007aedb0 in test::console::run_tests_console::he9d142d704f3a986+0x149c (predict_oai-98384e17fb94e863:arm64+0x10002edb0) tetherto#4 0x0001007c5758 in test::test_main::hf86a5e20735245b9+0x118 (predict_oai-98384e17fb94e863:arm64+0x100045758) tetherto#5 0x0001007c5da0 in test::test_main_static::h61ee9c8fd30abca0+0x54 (predict_oai-98384e17fb94e863:arm64+0x100045da0) ... ==45482==ABORTING
This pull request makes changes in Llama.cpp in order to be able to load models directly from memory. It is intended to be reviewable by commit. Individual commits contain a long text description below the header.
Tested that works properly from a bare Addon (LLM repo). See #1 (comment)
In particular, this PR exposes:
llama-cpp.h:llama_model_load_from_buffer(vector<uint8_t>&& data, ...)
to load from a single buffer containing a .gguf file contents.llama.h:llama_model_load_from_split_futures(char** paths, ...)
andllama-cpp.h:llama_model_load_fulfill_split_future(char* path, ..., unique_ptr<basic_streambuf<uint8_t>>&& streambuf)
which allow to asynchronously/incrementally load a model and upload its tensors to the backend storage while host memory is being released.How to run the code?
Build and prepare model
Build (e.g. in release mode) LLama.cpp including the examples, tests and tools:
Generate a sharded model and its
*.tensor.txt
summary file:Automated tests
Run automated tests for a single
gguf
file:Run automated tests for sharded model:
Or simply run all tests:
Should output:
Examples
Demo video: https://drive.google.com/file/d/1mjqecwJ1LFYUNofr4wIdPFK9IkUxbHZh/view?usp=sharing
Set up the environment:
Run example with Qwen3:
Outputs:
Run example with GTE:
Related PRs
Asana task: https://app.asana.com/1/45238840754660/project/1210873391319186/task/1210877463428607