-
Notifications
You must be signed in to change notification settings - Fork 13
WIP: llama: Vulkan: Fix Adreno Q8_0 issues. #11
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
WIP: llama: Vulkan: Fix Adreno Q8_0 issues. #11
Conversation
Signed-off-by: vineet <vineet.suryan@collabora.com>
Signed-off-by: vineet <vineet.suryan@collabora.com>
Signed-off-by: vineet <vineet.suryan@collabora.com>
Signed-off-by: vineet <vineet.suryan@collabora.com>
Signed-off-by: vineet <vineet.suryan@collabora.com>
Signed-off-by: vineet <vineet.suryan@collabora.com>
Signed-off-by: vineet <vineet.suryan@collabora.com>
Signed-off-by: vineet <vineet.suryan@collabora.com>
…lation Signed-off-by: vineet <vineet.suryan@collabora.com>
This fixes the vkDeviceLostError on Mali
cbea88f
to
208747f
Compare
Steps to run the backend-ops test suite:
This PR has a commit disabling several tests for quantized datatypes that are not currently working properly on Adreno 830. If you run the test suite as described above with this branch, it should say |
* oai moe * compat with new checkpoint * add attn sink impl * add rope scaling yarn * logits match with latest transformers code * wip chat template * rm trailing space * use ggml_scale_bias * rm redundant is_swa_all * convert interleaved gate_up * graph : fix activation function to match reference (#7) * vocab : handle o200k_harmony special tokens * ggml : add attention sinks support (#1) * llama : add attn sinks * ggml : add attn sinks * cuda : add attn sinks * vulkan : add support for sinks in softmax remove unnecessary return * ggml : add fused swiglu_oai op (#11) * ggml : add fused swiglu_oai op * Update ggml/src/ggml-cpu/ops.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update CUDA impl * cont : metal impl * add vulkan impl * test-backend-ops : more test cases, clean up * llama : remove unfused impl * remove extra lines --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com> * repack mxfp4 upon conversion * clean up a bit * enable thinking * add quick hack to render only some special tokens * fix bf16 conversion * remove vocab hack * webui ok * support chat parsing for gpt-oss * fix webui * direct mapping mxfp4, FINALLY * force using mxfp4 * properly use lazy tensor * ggml : add mxfp4 ggml : use e8m0 conversion instead of powf Co-authored-by: Diego Devesa <slarengh@gmail.com> change kvalues_mxfp4 table to match e2m1 (#6) metal : remove quantization for now (not used) cuda : fix disabled CUDA graphs due to ffn moe bias vulkan : add support for mxfp4 cont : add cm2 dequant * ggml : add ggml_add_id (#13) * ggml : add ggml_add_id * add cuda impl * llama : add weight support check for add_id * perf opt * add vulkan impl * rename cuda files * add metal impl * allow in-place ggml_add_id * llama : keep biases on CPU with --cpu-moe * llama : fix compile error ggml-ci * cuda : add fallback for __nv_cvt_e8m0_to_bf16raw ggml-ci * cleanup ggml-ci * sycl : fix supports_op for MXFP4 ggml-ci * fix Unknown reasoning format * ggml-cpu : fix AVX build ggml-ci * fix hip build ggml-ci * cuda : add mxfp4 dequantization support for cuBLAS ggml-ci * ggml-cpu : fix mxfp4 fallback definitions for some architectures ggml-ci * cuda : fix version required for __nv_cvt_e8m0_to_bf16raw --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co> Co-authored-by: slaren <slarengh@gmail.com>
* vulkan: fix debug mode issues * vulkan: remove broken check_results GGML_OP_SET_ROWS support
In this current version, the environment variable |
This makes MUL_MAT tests pass for Q8_0 when n=9 failed.
1049722
to
d12255c
Compare
d12255c
to
c5b7162
Compare
Closing this, see #34 for the new version |
This MR is a work-in-progress.
The current commits are able to get inference working for Q8_0 on Adreno 830 (Samsung S25), but finetuning still crashes.
We're currently working on a fix for lora-finetuning on Adreno A830, but you can use this for testing in the meanwhile.