Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix casting to float when assigning numeric values; fixes normalization of integer arrays #837

Merged
merged 1 commit into from
Dec 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions ehrapy/anndata/anndata_ext.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,6 +388,9 @@ def set_numeric_vars(

vars_idx = get_column_indices(adata, vars)

# if e.g. adata.X is of type int64, and values of dtype float64, the floats will be casted to int
adata.X = adata.X.astype(values.dtype)

adata.X[:, vars_idx] = values

return adata
Expand Down
26 changes: 13 additions & 13 deletions tests/data/dataset1.csv
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
idx,sys_bp_entry,dia_bp_entry,glucose,weight,disease,station
1,138,78,80,77,A,ICU
2,139,79,90,76,A,ICU
3,140,80,120,60,A,MICU
4,141,81,130,90,A,MICU
5,148,77,80,110,B,ICU
6,149,78,135,78,B,ICU
7,150,79,125,56,B,MICU
8,151,80,95,76,B,MICU
9,158,55,70,67,C,ICU
10,159,56,85,82,C,ICU
11,160,57,125,59,C,MICU
12,161,58,125,81,C,MICU
idx,sys_bp_entry,dia_bp_entry,glucose,weight,in_days,disease,station
1,138,78,80,77,1,A,ICU
2,139,79,90,76,2,A,ICU
3,140,80,120,60,0,A,MICU
4,141,81,130,90,1,A,MICU
5,148,77,80,110,0,B,ICU
6,149,78,135,78,1,B,ICU
7,150,79,125,56,2,B,MICU
8,151,80,95,76,3,B,MICU
9,158,55,70,67,4,C,ICU
10,159,56,85,82,1,C,ICU
11,160,57,125,59,2,C,MICU
12,161,58,125,81,1,C,MICU
94 changes: 94 additions & 0 deletions tests/preprocessing/test_normalization.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,19 @@ def adata_mini():
)[:8]


@pytest.fixture
def adata_mini_integers_in_X():
adata = read_csv(
f"{TEST_DATA_PATH}/dataset1.csv",
columns_obs_only=["idx", "sys_bp_entry", "dia_bp_entry", "glucose", "weight", "disease", "station"],
)
# cast data in X to integers; pd.read generates floats generously, but want to test integer normalization
adata.X = adata.X.astype(np.int32)
ep.ad.infer_feature_types(adata)
ep.ad.replace_feature_types(adata, ["in_days"], "numeric")
return adata


@pytest.fixture
def adata_to_norm():
obs_data = {"ID": ["Patient1", "Patient2", "Patient3"], "Age": [31, 94, 62]}
Expand Down Expand Up @@ -94,6 +107,27 @@ def test_norm_scale(array_type, adata_to_norm):
assert np.allclose(adata_norm.X[:, 5], adata_to_norm_casted.X[:, 5], equal_nan=True)


def test_norm_scale_integers(adata_mini_integers_in_X):
adata_norm = ep.pp.scale_norm(adata_mini_integers_in_X, copy=True)
in_days_norm = np.array(
[
[-0.4472136],
[0.4472136],
[-1.34164079],
[-0.4472136],
[-1.34164079],
[-0.4472136],
[0.4472136],
[1.34164079],
[2.23606798],
[-0.4472136],
[0.4472136],
[-0.4472136],
]
)
assert np.allclose(adata_norm.X, in_days_norm)


@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_norm_scale_kwargs(array_type, adata_to_norm):
adata_to_norm_casted = adata_to_norm.copy()
Expand Down Expand Up @@ -159,6 +193,12 @@ def test_norm_minmax(array_type, adata_to_norm):
assert np.allclose(adata_norm.X[:, 5], adata_to_norm_casted.X[:, 5], equal_nan=True)


def test_norm_minmax_integers(adata_mini_integers_in_X):
adata_norm = ep.pp.minmax_norm(adata_mini_integers_in_X, copy=True)
in_days_norm = np.array([[0.25], [0.5], [0.0], [0.25], [0.0], [0.25], [0.5], [0.75], [1.0], [0.25], [0.5], [0.25]])
assert np.allclose(adata_norm.X, in_days_norm)


@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_norm_minmax_kwargs(array_type, adata_to_norm):
adata_to_norm_casted = adata_to_norm.copy()
Expand Down Expand Up @@ -218,6 +258,12 @@ def test_norm_maxabs(array_type, adata_to_norm):
assert np.allclose(adata_norm.X[:, 5], adata_to_norm_casted.X[:, 5], equal_nan=True)


def test_norm_maxabs_integers(adata_mini_integers_in_X):
adata_norm = ep.pp.maxabs_norm(adata_mini_integers_in_X, copy=True)
in_days_norm = np.array([[0.25], [0.5], [0.0], [0.25], [0.0], [0.25], [0.5], [0.75], [1.0], [0.25], [0.5], [0.25]])
assert np.allclose(adata_norm.X, in_days_norm)


@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_norm_maxabs_group(array_type, adata_mini):
adata_mini_casted = adata_mini.copy()
Expand Down Expand Up @@ -273,6 +319,12 @@ def test_norm_robust_scale(array_type, adata_to_norm):
assert np.allclose(adata_norm.X[:, 5], adata_to_norm_casted.X[:, 5], equal_nan=True)


def test_norm_robust_scale_integers(adata_mini_integers_in_X):
adata_norm = ep.pp.robust_scale_norm(adata_mini_integers_in_X, copy=True)
in_days_norm = np.array([[0.0], [1.0], [-1.0], [0.0], [-1.0], [0.0], [1.0], [2.0], [3.0], [0.0], [1.0], [0.0]])
assert np.allclose(adata_norm.X, in_days_norm)


@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_norm_robust_scale_kwargs(array_type, adata_to_norm):
adata_to_norm_casted = adata_to_norm.copy()
Expand Down Expand Up @@ -331,6 +383,27 @@ def test_norm_quantile_uniform(array_type, adata_to_norm):
assert np.allclose(adata_norm.X[:, 5], adata_to_norm_casted.X[:, 5], equal_nan=True)


def test_norm_quantile_integers(adata_mini_integers_in_X):
adata_norm = ep.pp.quantile_norm(adata_mini_integers_in_X, copy=True)
in_days_norm = np.array(
[
[0.36363636],
[0.72727273],
[0.0],
[0.36363636],
[0.0],
[0.36363636],
[0.72727273],
[0.90909091],
[1.0],
[0.36363636],
[0.72727273],
[0.36363636],
]
)
assert np.allclose(adata_norm.X, in_days_norm)


@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_norm_quantile_uniform_kwargs(array_type, adata_to_norm):
adata_to_norm_casted = adata_to_norm.copy()
Expand Down Expand Up @@ -392,6 +465,27 @@ def test_norm_power(array_type, adata_to_norm):
assert np.allclose(adata_norm.X[:, 5], adata_to_norm_casted.X[:, 5], equal_nan=True)


def test_norm_power_integers(adata_mini_integers_in_X):
adata_norm = ep.pp.power_norm(adata_mini_integers_in_X, copy=True)
in_days_norm = np.array(
[
[-0.31234142],
[0.58319338],
[-1.65324303],
[-0.31234142],
[-1.65324303],
[-0.31234142],
[0.58319338],
[1.27419965],
[1.8444134],
[-0.31234142],
[0.58319338],
[-0.31234142],
]
)
assert np.allclose(adata_norm.X, in_days_norm)


@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_norm_power_kwargs(array_type, adata_to_norm):
adata_to_norm_casted = adata_to_norm.copy()
Expand Down
15 changes: 10 additions & 5 deletions tests/tools/feature_ranking/test_rank_features_groups.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,15 +323,20 @@ def test_rank_features_groups_generates_outputs(field_to_rank):
assert "log2foldchanges" not in adata.uns["rank_features_groups"]
assert "pts" not in adata.uns["rank_features_groups"]

if field_to_rank == "layer" or field_to_rank == "obs":
if field_to_rank == "layer":
assert len(adata.uns["rank_features_groups"]["names"]) == 4
assert len(adata.uns["rank_features_groups"]["pvals"]) == 4
assert len(adata.uns["rank_features_groups"]["scores"]) == 4

elif field_to_rank == "obs":
assert len(adata.uns["rank_features_groups"]["names"]) == 3 # It only captures the length of each group
assert len(adata.uns["rank_features_groups"]["pvals"]) == 3
assert len(adata.uns["rank_features_groups"]["scores"]) == 3

elif field_to_rank == "layer_and_obs":
assert len(adata.uns["rank_features_groups"]["names"]) == 6 # It only captures the length of each group
assert len(adata.uns["rank_features_groups"]["pvals"]) == 6
assert len(adata.uns["rank_features_groups"]["scores"]) == 6
assert len(adata.uns["rank_features_groups"]["names"]) == 7 # It only captures the length of each group
assert len(adata.uns["rank_features_groups"]["pvals"]) == 7
assert len(adata.uns["rank_features_groups"]["scores"]) == 7


def test_rank_features_groups_consistent_results():
Expand Down Expand Up @@ -396,7 +401,7 @@ def test_rank_features_group_column_to_rank():
adata_copy = adata.copy()

ep.tl.rank_features_groups(adata, groupby="disease", columns_to_rank="all")
assert len(adata.uns["rank_features_groups"]["names"]) == 2
assert len(adata.uns["rank_features_groups"]["names"]) == 3

# want to check a "complete selection" works
adata = adata_copy.copy()
Expand Down
Loading