Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 7 additions & 15 deletions vllm_ascend/ops/fused_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,8 +172,6 @@ def fused_experts_with_mc2(
npu_wait_tensor(shared_gate_up, expand_x)
shared_act = shared_experts.act_fn(shared_gate_up)

w1 = w1.transpose(1, 2)

group_list = expert_token_nums.to(torch.int64)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[expand_x],
Expand All @@ -189,7 +187,6 @@ def fused_experts_with_mc2(
gate_up_out = torch.cat(gate_up_out_list, dim=0)
gate_up_out = torch_npu.npu_swiglu(gate_up_out)

w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
Expand Down Expand Up @@ -266,7 +263,6 @@ def apply_mlp(hidden_states_wrapper: List[torch.Tensor],
assert len(hidden_states_wrapper) == 1
hidden_states = hidden_states_wrapper.pop()

w1 = w1.transpose(1, 2)
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
Expand Down Expand Up @@ -369,7 +365,6 @@ def fused_experts_with_all2all(
expanded_expert_idx, num_experts)
expert_tokens = expert_tokens.to(torch.int64)

w1 = w1.transpose(1, 2)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
Expand Down Expand Up @@ -611,7 +606,6 @@ def fused_experts_moge(
0, sorted_topk_ids).unsqueeze(-1)
group_list = num_tokens_per_expert.cumsum(dim=0).to(torch.int64)

w1 = w1.transpose(1, 2)
gate_up_out = torch_npu.npu_grouped_matmul(
x=[sorted_hidden_states],
weight=[w1],
Expand All @@ -628,7 +622,6 @@ def fused_experts_moge(
gate_up_out = torch_npu.npu_swiglu(gate_up_out)
gate_up_out *= topk_scales

w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
Expand Down Expand Up @@ -760,7 +753,6 @@ def fused_experts(
expanded_expert_idx, num_experts)
expert_tokens = expert_tokens.to(torch.int64)

w1 = w1.transpose(1, 2)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[sorted_hidden_states],
weight=[w1],
Expand All @@ -774,7 +766,6 @@ def fused_experts(
gate_up_out = torch.cat(gate_up_out_list, dim=0)
gate_up_out = torch_npu.npu_swiglu(gate_up_out)

w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
Expand Down Expand Up @@ -1003,12 +994,13 @@ def __init__(self, moe: FusedMoEConfig = None):
def process_weights_after_loading(self, layer):
super(UnquantizedFusedMoEMethod,
self).process_weights_after_loading(layer)
layer.w13_weight = torch.nn.Parameter(self._maybe_pad_weight(
layer.w13_weight.data),
requires_grad=False)
layer.w2_weight = torch.nn.Parameter(self._maybe_pad_weight(
layer.w2_weight.data),
requires_grad=False)
w13_data = self._maybe_pad_weight(layer.w13_weight.data).transpose(
1, 2).contiguous()
layer.w13_weight = torch.nn.Parameter(w13_data, requires_grad=False)

w2_data = self._maybe_pad_weight(layer.w2_weight.data).transpose(
1, 2).contiguous()
layer.w2_weight = torch.nn.Parameter(w2_data, requires_grad=False)

def apply(
self,
Expand Down
Loading