forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add bu aic * add aic * add tests * add hrnet aic * fix aic sigmas * update aic config and checkpoints * update udp config * update config
- Loading branch information
Showing
14 changed files
with
991 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
199 changes: 199 additions & 0 deletions
199
configs/bottom_up/higherhrnet/aic/higher_hrnet32_aic_512x512.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
dist_params = dict(backend='nccl') | ||
workflow = [('train', 1)] | ||
checkpoint_config = dict(interval=50) | ||
evaluation = dict(interval=50, metric='mAP', key_indicator='AP') | ||
|
||
optimizer = dict( | ||
type='Adam', | ||
lr=0.0015, | ||
) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=0.001, | ||
step=[200, 260]) | ||
total_epochs = 300 | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
channel_cfg = dict( | ||
num_output_channels=14, | ||
dataset_joints=14, | ||
dataset_channel=[ | ||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], | ||
], | ||
inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) | ||
|
||
data_cfg = dict( | ||
image_size=512, | ||
base_size=256, | ||
base_sigma=2, | ||
heatmap_size=[128, 256], | ||
num_joints=channel_cfg['dataset_joints'], | ||
dataset_channel=channel_cfg['dataset_channel'], | ||
inference_channel=channel_cfg['inference_channel'], | ||
num_scales=2, | ||
scale_aware_sigma=False, | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type='BottomUp', | ||
pretrained='https://download.openmmlab.com/mmpose/' | ||
'pretrain_models/hrnet_w32-36af842e.pth', | ||
backbone=dict( | ||
type='HRNet', | ||
in_channels=3, | ||
extra=dict( | ||
stage1=dict( | ||
num_modules=1, | ||
num_branches=1, | ||
block='BOTTLENECK', | ||
num_blocks=(4, ), | ||
num_channels=(64, )), | ||
stage2=dict( | ||
num_modules=1, | ||
num_branches=2, | ||
block='BASIC', | ||
num_blocks=(4, 4), | ||
num_channels=(32, 64)), | ||
stage3=dict( | ||
num_modules=4, | ||
num_branches=3, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4), | ||
num_channels=(32, 64, 128)), | ||
stage4=dict( | ||
num_modules=3, | ||
num_branches=4, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4, 4), | ||
num_channels=(32, 64, 128, 256))), | ||
), | ||
keypoint_head=dict( | ||
type='BottomUpHigherResolutionHead', | ||
in_channels=32, | ||
num_joints=14, | ||
tag_per_joint=True, | ||
extra=dict(final_conv_kernel=1, ), | ||
num_deconv_layers=1, | ||
num_deconv_filters=[32], | ||
num_deconv_kernels=[4], | ||
num_basic_blocks=4, | ||
cat_output=[True], | ||
with_ae_loss=[True, False], | ||
loss_keypoint=dict( | ||
type='MultiLossFactory', | ||
num_joints=14, | ||
num_stages=2, | ||
ae_loss_type='exp', | ||
with_ae_loss=[True, False], | ||
push_loss_factor=[0.01, 0.01], | ||
pull_loss_factor=[0.001, 0.001], | ||
with_heatmaps_loss=[True, True], | ||
heatmaps_loss_factor=[1.0, 1.0])), | ||
train_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
img_size=data_cfg['image_size']), | ||
test_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
max_num_people=30, | ||
scale_factor=[1], | ||
with_heatmaps=[True, True], | ||
with_ae=[True, False], | ||
project2image=True, | ||
nms_kernel=5, | ||
nms_padding=2, | ||
tag_per_joint=True, | ||
detection_threshold=0.1, | ||
tag_threshold=1, | ||
use_detection_val=True, | ||
ignore_too_much=False, | ||
adjust=True, | ||
refine=True, | ||
flip_test=True)) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='BottomUpRandomAffine', | ||
rot_factor=30, | ||
scale_factor=[0.75, 1.5], | ||
scale_type='short', | ||
trans_factor=40), | ||
dict(type='BottomUpRandomFlip', flip_prob=0.5), | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
dict( | ||
type='BottomUpGenerateTarget', | ||
sigma=2, | ||
max_num_people=30, | ||
), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'joints', 'targets', 'masks'], | ||
meta_keys=[]), | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='BottomUpGetImgSize', test_scale_factor=[1]), | ||
dict( | ||
type='BottomUpResizeAlign', | ||
transforms=[ | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
]), | ||
dict( | ||
type='Collect', | ||
keys=['img'], | ||
meta_keys=[ | ||
'image_file', 'aug_data', 'test_scale_factor', 'base_size', | ||
'center', 'scale', 'flip_index' | ||
]), | ||
] | ||
|
||
test_pipeline = val_pipeline | ||
|
||
data_root = 'data/aic' | ||
data = dict( | ||
samples_per_gpu=24, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type='BottomUpAicDataset', | ||
ann_file=f'{data_root}/annotations/aic_train.json', | ||
img_prefix=f'{data_root}/ai_challenger_keypoint_train_20170902/' | ||
'keypoint_train_images_20170902/', | ||
data_cfg=data_cfg, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type='BottomUpAicDataset', | ||
ann_file=f'{data_root}/annotations/aic_val.json', | ||
img_prefix=f'{data_root}/ai_challenger_keypoint_validation_20170911/' | ||
'keypoint_validation_images_20170911/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
test=dict( | ||
type='BottomUpAicDataset', | ||
ann_file=f'{data_root}/annotations/aic_val.json', | ||
img_prefix=f'{data_root}/ai_challenger_keypoint_validation_20170911/' | ||
'keypoint_validation_images_20170911/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.