Skip to content

Modified version of model proposed in Ligeng Zhu and Brian Funt's paper "Colorizing Color Images".

Notifications You must be signed in to change notification settings

yuanxun-yx/white-balance-baseline

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

White-Balance-By-Deep-learning

Pytorch implementation of Ligeng Zhu and Brian Funt 's paper "Colorizing Color Images" (HVEI 2018)

Torch implementation by Ligeng Zhu

Demo

demo

Usage

Training

python3 colorize.py train --dataset <dataset_dir> --save-model-name <model_name>

usage: colorize.py train [-h] [--epochs EPOCHS] [--batch-size BATCH_SIZE]
                         --dataset DATASET [--save-model-dir SAVE_MODEL_DIR]
                         [--save-model-name SAVE_MODEL_NAME]
                         [--image-size IMAGE_SIZE] [--cuda] [--seed SEED]
                         [--lr LR] [--log-interval LOG_INTERVAL]
                         [--checkpoint-dir CHECKPOINT_DIR] [--resume RESUME]
                         [--gpus [GPUS [GPUS ...]]]

optional arguments:
  -h, --help            show this help message and exit
  --epochs EPOCHS       number of training epochs, default is 2
  --batch-size BATCH_SIZE
                        training batch size, default is 30
  --dataset DATASET     path to training dataset, the path should point to a
                        folder containing another folder with all the training
                        images
  --save-model-dir SAVE_MODEL_DIR
                        directory of the model to be saved, default is model/
  --save-model-name SAVE_MODEL_NAME
                        save model name
  --image-size IMAGE_SIZE
                        size of training images, default is 256
  --cuda                run on GPU
  --seed SEED           random seed for training
  --lr LR               learning rate, default is 0.001
  --log-interval LOG_INTERVAL
                        number of batches after which the training loss is
                        logged, default is 100
  --checkpoint-dir CHECKPOINT_DIR
                        checkpoint model saving directory
  --resume RESUME       resume training from saved model
  --gpus [GPUS [GPUS ...]]
                        specify GPUs to use

<dataset_dir> should be a directory containing images, for example mscoco train 2014 dataset.

Use --resume to resume from checkpoint

Evaluating

python3 colorize.py eval --input-dir <input_dir> --output-dir <output_dir> --model <model>

usage: colorize.py eval [-h] --input-dir INPUT_DIR [--output-dir OUTPUT_DIR]
                        --model MODEL [--cuda] [--gpus [GPUS [GPUS ...]]]

optional arguments:
  -h, --help            show this help message and exit
  --input-dir INPUT_DIR
                        path to input image directory
  --output-dir OUTPUT_DIR
                        path to output image directory
  --model MODEL         saved model to be used for evaluation
  --cuda                run on GPU
  --gpus [GPUS [GPUS ...]]
                        specify GPUs to use

  • To run on GPU, add --cuda

  • To change other hyper parameters such as epochs, learning rate and batch size, use python3 colorize.py {train | eval} -h for details

Reference

Fast Neural Style

About

Modified version of model proposed in Ligeng Zhu and Brian Funt's paper "Colorizing Color Images".

Resources

Stars

Watchers

Forks

Languages

  • Python 95.9%
  • Shell 4.1%