Skip to content

Commit

Permalink
support mean,softmax_with_cross_entropy on Baidu Kunlun (#27792)
Browse files Browse the repository at this point in the history
* support mean,softmax_with_cross_entropy on Baidu Kunlun,test=kunlun

* fix unittests error,test=kunlun

* delete boost::get,test=kunlun
  • Loading branch information
yghstill authored Oct 13, 2020
1 parent 1607e87 commit 70c8c31
Show file tree
Hide file tree
Showing 5 changed files with 702 additions and 2 deletions.
66 changes: 66 additions & 0 deletions paddle/fluid/operators/mean_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/mean_op.h"
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include <unordered_map>

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MeanXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
const float* x_data = input->data<float>();
float* y_data = output->data<float>();
int r = xpu::mean(dev_ctx.x_context(), x_data, y_data, input->numel());
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
}
};
template <typename DeviceContext, typename T>
class MeanGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ(OG->numel(), 1, platform::errors::InvalidArgument(
"Mean Gradient should be scalar"));
auto IG = context.Output<Tensor>(framework::GradVarName("X"));
IG->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
float* dx = IG->data<float>();
const float* dy = OG->data<float>();
int r = xpu::mean_grad(dev_ctx.x_context(), dx, dy, IG->numel());
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
mean, ops::MeanXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
mean_grad,
ops::MeanGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
96 changes: 96 additions & 0 deletions paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

namespace paddle {
namespace operators {

template <typename T>
class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(context.GetPlace()), true,
platform::errors::InvalidArgument("This kernel only runs on XPU."));
const Tensor* logits = context.Input<Tensor>("Logits");
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* softmax = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss");
const int rank = logits->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
PADDLE_ENFORCE_EQ(axis, rank - 1, platform::errors::InvalidArgument(
"axis should == rank - 1"));
softmax->mutable_data<T>(context.GetPlace());
loss->mutable_data<T>(context.GetPlace());
const int n = SizeToAxis(axis, logits->dims());
const int d = SizeFromAxis(axis, logits->dims());
// softmax
auto& dev_ctx =
context.template device_context<platform::XPUDeviceContext>();
int r = xpu::softmax2d_forward(dev_ctx.x_context(), logits->data<float>(),
softmax->data<float>(), n, d);
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
// cross_entropy
auto ignore_index = context.Attr<int>("ignore_index");
const bool soft_label = context.Attr<bool>("soft_label");
if (soft_label) {
PADDLE_THROW(platform::errors::InvalidArgument(
"XPU only support soft_label == false for now!"));
} else {
auto* p_labels = labels->data<int64_t>();
int64_t* labels_int64_host =
reinterpret_cast<int64_t*>(std::malloc(n * sizeof(int64_t)));
int* labels_int32_host =
reinterpret_cast<int*>(std::malloc(n * sizeof(int)));
int* labels_int32_device = NULL;
PADDLE_ENFORCE_EQ(
xpu_malloc(reinterpret_cast<void**>(&labels_int32_device),
n * sizeof(int)),
XPU_SUCCESS, platform::errors::InvalidArgument("XPU kernel error!"));
dev_ctx.Wait();
memory::Copy(platform::CPUPlace(), labels_int64_host,
BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
p_labels, n * sizeof(int64_t));
for (int i = 0; i < n; ++i) {
labels_int32_host[i] = labels_int64_host[i];
}
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
labels_int32_device, platform::CPUPlace(), labels_int32_host,
n * sizeof(int));
int r = xpu::cross_entropy_forward(
dev_ctx.x_context(), n, d, softmax->data<float>(),
labels_int32_device, loss->data<float>(), nullptr, ignore_index);
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
dev_ctx.Wait();
std::free(labels_int32_host);
std::free(labels_int64_host);
xpu_free(labels_int32_device);
}
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(softmax_with_cross_entropy,
ops::SoftmaxWithCrossEntropyXPUKernel<float>);
#endif
7 changes: 5 additions & 2 deletions python/paddle/fluid/tests/unittests/op_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
import collections
from collections import defaultdict

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import append_backward
Expand Down Expand Up @@ -1133,8 +1134,10 @@ def find_actual(target_name, fetch_list):
)
# Check inplace for given op, its grad op, its grad_grad op, etc.
# No effect on original OpTest
self.check_inplace_output_with_place(
place, no_check_set=no_check_set, inplace_atol=inplace_atol)
# Currently not support ParallelExecutor on XPUPlace.
if not paddle.is_compiled_with_xpu():
self.check_inplace_output_with_place(
place, no_check_set=no_check_set, inplace_atol=inplace_atol)

if check_dygraph:
return outs, dygraph_outs, fetch_list
Expand Down
144 changes: 144 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_mean_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard

np.random.seed(10)


class TestMeanOp(OpTest):
def setUp(self):
self.op_type = "mean"
self.dtype = np.float64
self.init_dtype_type()
self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
self.outputs = {'Out': np.mean(self.inputs["X"])}

def init_dtype_type(self):
pass

def test_check_output(self):
self.check_output()

def test_checkout_grad(self):
self.check_grad(['X'], 'Out')


class TestMeanOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of mean_op must be Variable.
input1 = 12
self.assertRaises(TypeError, fluid.layers.mean, input1)
# The input dtype of mean_op must be float16, float32, float64.
input2 = fluid.layers.data(
name='input2', shape=[12, 10], dtype="int32")
self.assertRaises(TypeError, fluid.layers.mean, input2)
input3 = fluid.layers.data(
name='input3', shape=[4], dtype="float16")
fluid.layers.softmax(input3)


class TestXPUMeanOp(TestMeanOp):
def init_dtype_type(self):
self.dtype = np.float32

def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place)

def test_checkout_grad(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')


class TestMeanAPI(unittest.TestCase):
# test paddle.tensor.stat.mean

def setUp(self):
self.x_shape = [2, 3, 4, 5]
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
self.place = paddle.XPUPlace(0)

def test_api_static(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.data('X', self.x_shape)
out1 = paddle.mean(x)
out2 = paddle.tensor.mean(x)
out3 = paddle.tensor.stat.mean(x)
axis = np.arange(len(self.x_shape)).tolist()
out4 = paddle.mean(x, axis)
out5 = paddle.mean(x, tuple(axis))

exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x},
fetch_list=[out1, out2, out3, out4, out5])
out_ref = np.mean(self.x)
for out in res:
self.assertEqual(np.allclose(out, out_ref, rtol=1e-04), True)

def test_api_dygraph(self):
paddle.disable_static(self.place)

def test_case(x, axis=None, keepdim=False):
x_tensor = paddle.to_tensor(x)
out = paddle.mean(x_tensor, axis, keepdim)
if isinstance(axis, list):
axis = tuple(axis)
if len(axis) == 0:
axis = None
out_ref = np.mean(x, axis, keepdims=keepdim)
self.assertEqual(
np.allclose(
out.numpy(), out_ref, rtol=1e-04), True)

test_case(self.x)
test_case(self.x, [])
test_case(self.x, -1)
test_case(self.x, keepdim=True)
test_case(self.x, 2, keepdim=True)
test_case(self.x, [0, 2])
test_case(self.x, (0, 2))
test_case(self.x, [0, 1, 2, 3])
paddle.enable_static()

def test_errors(self):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
x = paddle.to_tensor(x)
self.assertRaises(Exception, paddle.mean, x, -3)
self.assertRaises(Exception, paddle.mean, x, 2)
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.data('X', [10, 12], 'int32')
self.assertRaises(TypeError, paddle.mean, x)


if __name__ == "__main__":
unittest.main()
Loading

0 comments on commit 70c8c31

Please sign in to comment.