-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Set maximum number of learners of AdaBoost
#171
Labels
Comments
lars-reimann
added a commit
that referenced
this issue
Apr 27, 2023
### Summary of Changes * Rename `n_columns` to `number_of_columns` * Rename `n_rows` to `number_of_rows` Reason: The prefix `n` is commonly used instead of `number_of`. However, we also need to add a parameter to `AdaBoost` to set the maximum number of learners (#171). Calling that `maximum_n_learners` doesn't look nearly as readable to me as `maximum_number_of_learners`. And if we don't use `n` to replace `number_of` here, we shouldn't use this anywhere. --------- Co-authored-by: megalinter-bot <129584137+megalinter-bot@users.noreply.github.com>
lars-reimann
changed the title
Set maximum number of learner of
Set maximum number of learners of May 5, 2023
AdaBoost
AdaBoost
lars-reimann
added a commit
that referenced
this issue
May 5, 2023
…daBoost` (#269) Closes #171 and #173. ### Summary of Changes feat: Added parameter `maximum_number_of_learner` to `AdaBoost` feat: Added parameter `learner` to `AdaBoost` feat: Added private abstract Method `_get_scikit_learner` in `Classifier` and `Regressor` refactor: Improved error messages in `classification` and `regression` docs: Improved docstrings for raised `ValueErrors` in `classification` and `regression` --------- Co-authored-by: Alexander Gréus <alexgreus51@gmail.com> Co-authored-by: megalinter-bot <129584137+megalinter-bot@users.noreply.github.com> Co-authored-by: Lars Reimann <mail@larsreimann.com>
lars-reimann
pushed a commit
that referenced
this issue
May 11, 2023
## [0.12.0](v0.11.0...v0.12.0) (2023-05-11) ### Features * add `learning_rate` to AdaBoost classifier and regressor. ([#251](#251)) ([7f74440](7f74440)), closes [#167](#167) * add alpha parameter to `lasso_regression` ([#232](#232)) ([b5050b9](b5050b9)), closes [#163](#163) * add parameter `lasso_ratio` to `ElasticNetRegression` ([#237](#237)) ([4a1a736](4a1a736)), closes [#166](#166) * Add parameter `number_of_tree` to `RandomForest` classifier and regressor ([#230](#230)) ([414336a](414336a)), closes [#161](#161) * Added `Table.plot_boxplots` to plot a boxplot for each numerical column in the table ([#254](#254)) ([0203a0c](0203a0c)), closes [#156](#156) [#239](#239) * Added `Table.plot_histograms` to plot a histogram for each column in the table ([#252](#252)) ([e27d410](e27d410)), closes [#157](#157) * Added `Table.transform_table` method which returns the transformed Table ([#229](#229)) ([0a9ce72](0a9ce72)), closes [#110](#110) * Added alpha parameter to `RidgeRegression` ([#231](#231)) ([1ddc948](1ddc948)), closes [#164](#164) * Added Column#transform ([#270](#270)) ([40fb756](40fb756)), closes [#255](#255) * Added method `Table.inverse_transform_table` which returns the original table ([#227](#227)) ([846bf23](846bf23)), closes [#111](#111) * Added parameter `c` to `SupportVectorMachines` ([#267](#267)) ([a88eb8b](a88eb8b)), closes [#169](#169) * Added parameter `maximum_number_of_learner` and `learner` to `AdaBoost` ([#269](#269)) ([bb5a07e](bb5a07e)), closes [#171](#171) [#173](#173) * Added parameter `number_of_trees` to `GradientBoosting` ([#268](#268)) ([766f2ff](766f2ff)), closes [#170](#170) * Allow arguments of type pathlib.Path for file I/O methods ([#228](#228)) ([2b58c82](2b58c82)), closes [#146](#146) * convert `Schema` to `dict` and format it nicely in a notebook ([#244](#244)) ([ad1cac5](ad1cac5)), closes [#151](#151) * Convert between Excel file and `Table` ([#233](#233)) ([0d7a998](0d7a998)), closes [#138](#138) [#139](#139) * convert containers for tabular data to HTML ([#243](#243)) ([683c279](683c279)), closes [#140](#140) * make `Column` a subclass of `Sequence` ([#245](#245)) ([a35b943](a35b943)) * mark optional hyperparameters as keyword only ([#296](#296)) ([44a41eb](44a41eb)), closes [#278](#278) * move exceptions back to common package ([#295](#295)) ([a91172c](a91172c)), closes [#177](#177) [#262](#262) * precision metric for classification ([#272](#272)) ([5adadad](5adadad)), closes [#185](#185) * Raise error if an untagged table is used instead of a `TaggedTable` ([#234](#234)) ([8eea3dd](8eea3dd)), closes [#192](#192) * recall and F1-score metrics for classification ([#277](#277)) ([2cf93cc](2cf93cc)), closes [#187](#187) [#186](#186) * replace prefix `n` with `number_of` ([#250](#250)) ([f4f44a6](f4f44a6)), closes [#171](#171) * set `alpha` parameter for regularization of `ElasticNetRegression` ([#238](#238)) ([e642d1d](e642d1d)), closes [#165](#165) * Set `column_names` in `fit` methods of table transformers to be required ([#225](#225)) ([2856296](2856296)), closes [#179](#179) * set learning rate of Gradient Boosting models ([#253](#253)) ([9ffaf55](9ffaf55)), closes [#168](#168) * Support vector machine for regression and for classification ([#236](#236)) ([7f6c3bd](7f6c3bd)), closes [#154](#154) * usable constructor for `Table` ([#294](#294)) ([56a1fc4](56a1fc4)), closes [#266](#266) * usable constructor for `TaggedTable` ([#299](#299)) ([01c3ad9](01c3ad9)), closes [#293](#293) ### Bug Fixes * OneHotEncoder no longer creates duplicate column names ([#271](#271)) ([f604666](f604666)), closes [#201](#201) * selectively ignore one warning instead of all warnings ([#235](#235)) ([3aad07d](3aad07d))
🎉 This issue has been resolved in version 0.12.0 🎉 The release is available on:
Your semantic-release bot 📦🚀 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Is your feature request related to a problem?
It's not possible to set the maximum number of learners of
AdaBoost
.Desired solution
maximum_number_of_learners: int
to the initializer ofsafeds.ml.classification.AdaBoost
andsafeds.ml.regression.AdaBoost
maximum_number_of_learners
< 1n_estimators
of the wrappedscikit-learn
model in thefit
methodPossible alternatives (optional)
No response
Screenshots (optional)
No response
Additional Context (optional)
No response
The text was updated successfully, but these errors were encountered: