Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add parameter number_of_tree to RandomForest classifier and regressor #230

Merged
merged 6 commits into from
Apr 22, 2023

Conversation

alex-senger
Copy link
Contributor

@alex-senger alex-senger commented Apr 21, 2023

Closes #161.

Summary of Changes

Added number_of_trees parameter to initiator of random_forest_classifier and random_forest_regressor.

@alex-senger alex-senger requested a review from a team as a code owner April 21, 2023 11:28
@alex-senger alex-senger linked an issue Apr 21, 2023 that may be closed by this pull request
@alex-senger alex-senger changed the title feat: Add parameter ´number_of_trees´ to ´random_forest_classifier´ and regressor feat: Add parameter number_of_tree to random_forest_classifier and regressor Apr 21, 2023
@alex-senger alex-senger changed the title feat: Add parameter number_of_tree to random_forest_classifier and regressor feat: Add parameter number_of_tree to random_forest_classifier and regressor Apr 21, 2023
@alex-senger alex-senger changed the title feat: Add parameter number_of_tree to random_forest_classifier and regressor feat: Add parameter number_of_tree to random_forest_classifier and regressor Apr 21, 2023
@lars-reimann
Copy link
Member

lars-reimann commented Apr 21, 2023

🦙 MegaLinter status: ✅ SUCCESS

Descriptor Linter Files Fixed Errors Elapsed time
✅ PYTHON black 4 0 0 0.58s
✅ PYTHON mypy 4 0 1.7s
✅ PYTHON ruff 4 0 0 0.03s
✅ REPOSITORY git_diff yes no 0.02s

See detailed report in MegaLinter reports
Set VALIDATE_ALL_CODEBASE: true in mega-linter.yml to validate all sources, not only the diff

MegaLinter is graciously provided by OX Security

@codecov
Copy link

codecov bot commented Apr 21, 2023

Codecov Report

Merging #230 (a0a61ff) into main (4f08a2c) will increase coverage by 0.00%.
The diff coverage is 100.00%.

@@           Coverage Diff           @@
##             main     #230   +/-   ##
=======================================
  Coverage   97.97%   97.98%           
=======================================
  Files          44       44           
  Lines        1485     1491    +6     
=======================================
+ Hits         1455     1461    +6     
  Misses         30       30           
Impacted Files Coverage Δ
...feds/ml/classical/classification/_random_forest.py 100.00% <100.00%> (ø)
...c/safeds/ml/classical/regression/_random_forest.py 100.00% <100.00%> (ø)

Help us with your feedback. Take ten seconds to tell us how you rate us. Have a feature suggestion? Share it here.

@lars-reimann lars-reimann changed the title feat: Add parameter number_of_tree to random_forest_classifier and regressor feat: Add parameter number_of_tree to RandomForest classifier and regressor Apr 21, 2023
alex-senger and others added 3 commits April 22, 2023 14:51
docs: improve documentation (classification)

Co-authored-by: Alexander <47296670+Marsmaennchen221@users.noreply.github.com>
docs: improve documentation (regression)

Co-authored-by: Alexander <47296670+Marsmaennchen221@users.noreply.github.com>
@lars-reimann lars-reimann dismissed Marsmaennchen221’s stale review April 22, 2023 14:17

Suggested changes have been applied

@lars-reimann lars-reimann merged commit 414336a into main Apr 22, 2023
@lars-reimann lars-reimann deleted the 161-set-number-of-trees-for-random-forests branch April 22, 2023 14:18
lars-reimann pushed a commit that referenced this pull request May 11, 2023
## [0.12.0](v0.11.0...v0.12.0) (2023-05-11)

### Features

* add `learning_rate` to AdaBoost classifier and regressor. ([#251](#251)) ([7f74440](7f74440)), closes [#167](#167)
* add alpha parameter to `lasso_regression` ([#232](#232)) ([b5050b9](b5050b9)), closes [#163](#163)
* add parameter `lasso_ratio` to `ElasticNetRegression` ([#237](#237)) ([4a1a736](4a1a736)), closes [#166](#166)
* Add parameter `number_of_tree` to `RandomForest` classifier and regressor ([#230](#230)) ([414336a](414336a)), closes [#161](#161)
* Added `Table.plot_boxplots` to plot a boxplot for each numerical column in the table ([#254](#254)) ([0203a0c](0203a0c)), closes [#156](#156) [#239](#239)
* Added `Table.plot_histograms` to plot a histogram for each column in the table ([#252](#252)) ([e27d410](e27d410)), closes [#157](#157)
* Added `Table.transform_table` method which returns the transformed Table ([#229](#229)) ([0a9ce72](0a9ce72)), closes [#110](#110)
* Added alpha parameter to `RidgeRegression` ([#231](#231)) ([1ddc948](1ddc948)), closes [#164](#164)
* Added Column#transform ([#270](#270)) ([40fb756](40fb756)), closes [#255](#255)
* Added method `Table.inverse_transform_table` which returns the original table ([#227](#227)) ([846bf23](846bf23)), closes [#111](#111)
* Added parameter `c` to `SupportVectorMachines` ([#267](#267)) ([a88eb8b](a88eb8b)), closes [#169](#169)
* Added parameter `maximum_number_of_learner` and `learner` to `AdaBoost` ([#269](#269)) ([bb5a07e](bb5a07e)), closes [#171](#171) [#173](#173)
* Added parameter `number_of_trees` to `GradientBoosting` ([#268](#268)) ([766f2ff](766f2ff)), closes [#170](#170)
* Allow arguments of type pathlib.Path for file I/O methods ([#228](#228)) ([2b58c82](2b58c82)), closes [#146](#146)
* convert `Schema` to `dict` and format it nicely in a notebook ([#244](#244)) ([ad1cac5](ad1cac5)), closes [#151](#151)
* Convert between Excel file and `Table` ([#233](#233)) ([0d7a998](0d7a998)), closes [#138](#138) [#139](#139)
* convert containers for tabular data to HTML ([#243](#243)) ([683c279](683c279)), closes [#140](#140)
* make `Column` a subclass of `Sequence` ([#245](#245)) ([a35b943](a35b943))
* mark optional hyperparameters as keyword only ([#296](#296)) ([44a41eb](44a41eb)), closes [#278](#278)
* move exceptions back to common package ([#295](#295)) ([a91172c](a91172c)), closes [#177](#177) [#262](#262)
* precision metric for classification ([#272](#272)) ([5adadad](5adadad)), closes [#185](#185)
* Raise error if an untagged table is used instead of a `TaggedTable` ([#234](#234)) ([8eea3dd](8eea3dd)), closes [#192](#192)
* recall and F1-score metrics for classification ([#277](#277)) ([2cf93cc](2cf93cc)), closes [#187](#187) [#186](#186)
* replace prefix `n` with `number_of` ([#250](#250)) ([f4f44a6](f4f44a6)), closes [#171](#171)
* set `alpha` parameter for regularization of `ElasticNetRegression` ([#238](#238)) ([e642d1d](e642d1d)), closes [#165](#165)
* Set `column_names` in `fit` methods of table transformers to be required ([#225](#225)) ([2856296](2856296)), closes [#179](#179)
* set learning rate of Gradient Boosting models ([#253](#253)) ([9ffaf55](9ffaf55)), closes [#168](#168)
* Support vector machine for regression and for classification ([#236](#236)) ([7f6c3bd](7f6c3bd)), closes [#154](#154)
* usable constructor for `Table` ([#294](#294)) ([56a1fc4](56a1fc4)), closes [#266](#266)
* usable constructor for `TaggedTable` ([#299](#299)) ([01c3ad9](01c3ad9)), closes [#293](#293)

### Bug Fixes

* OneHotEncoder no longer creates duplicate column names ([#271](#271)) ([f604666](f604666)), closes [#201](#201)
* selectively ignore one warning instead of all warnings ([#235](#235)) ([3aad07d](3aad07d))
@lars-reimann
Copy link
Member

🎉 This PR is included in version 0.12.0 🎉

The release is available on:

Your semantic-release bot 📦🚀

@lars-reimann lars-reimann added the released Included in a release label May 11, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
released Included in a release
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Set number of trees for random forests
5 participants