Skip to content

Commit

Permalink
Merge pull request #1031 from borglab/add-python-unit-test-robust-noise
Browse files Browse the repository at this point in the history
Add python unit test for triangulation with robust noise model
  • Loading branch information
johnwlambert authored Jan 13, 2022
2 parents c407609 + 0ff9110 commit aef2a39
Show file tree
Hide file tree
Showing 2 changed files with 132 additions and 36 deletions.
21 changes: 14 additions & 7 deletions gtsam/geometry/geometry.i
Original file line number Diff line number Diff line change
Expand Up @@ -923,27 +923,34 @@ class StereoCamera {
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3_S2* sharedCal,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3DS2* sharedCal,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3Bundler* sharedCal,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3_S2& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Bundler& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Fisheye& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Unified& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulateNonlinear(const gtsam::Pose3Vector& poses,
gtsam::Cal3_S2* sharedCal,
const gtsam::Point2Vector& measurements,
Expand Down
147 changes: 118 additions & 29 deletions python/gtsam/tests/test_Triangulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,28 +6,40 @@
See LICENSE for the license information
Test Triangulation
Author: Frank Dellaert & Fan Jiang (Python)
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
"""
import unittest
from typing import Iterable, List, Optional, Tuple, Union

import numpy as np

import gtsam
from gtsam import (Cal3_S2, Cal3Bundler, CameraSetCal3_S2,
CameraSetCal3Bundler, PinholeCameraCal3_S2,
PinholeCameraCal3Bundler, Point2Vector, Point3, Pose3,
Pose3Vector, Rot3)
from gtsam import (
Cal3_S2,
Cal3Bundler,
CameraSetCal3_S2,
CameraSetCal3Bundler,
PinholeCameraCal3_S2,
PinholeCameraCal3Bundler,
Point2,
Point2Vector,
Point3,
Pose3,
Pose3Vector,
Rot3,
)
from gtsam.utils.test_case import GtsamTestCase

UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)

class TestVisualISAMExample(GtsamTestCase):
""" Tests for triangulation with shared and individual calibrations """

class TestTriangulationExample(GtsamTestCase):
"""Tests for triangulation with shared and individual calibrations"""

def setUp(self):
""" Set up two camera poses """
"""Set up two camera poses"""
# Looking along X-axis, 1 meter above ground plane (x-y)
upright = Rot3.Ypr(-np.pi / 2, 0., -np.pi / 2)
pose1 = Pose3(upright, Point3(0, 0, 1))
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))

# create second camera 1 meter to the right of first camera
pose2 = pose1.compose(Pose3(Rot3(), Point3(1, 0, 0)))
Expand All @@ -39,15 +51,24 @@ def setUp(self):
# landmark ~5 meters infront of camera
self.landmark = Point3(5, 0.5, 1.2)

def generate_measurements(self, calibration, camera_model, cal_params, camera_set=None):
def generate_measurements(
self,
calibration: Union[Cal3Bundler, Cal3_S2],
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
cal_params: Iterable[Iterable[Union[int, float]]],
camera_set: Optional[Union[CameraSetCal3Bundler,
CameraSetCal3_S2]] = None,
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
List[Cal3Bundler], List[Cal3_S2]]]:
"""
Generate vector of measurements for given calibration and camera model.
Args:
Args:
calibration: Camera calibration e.g. Cal3_S2
camera_model: Camera model e.g. PinholeCameraCal3_S2
cal_params: Iterable of camera parameters for `calibration` e.g. [K1, K2]
camera_set: Cameraset object (for individual calibrations)
Returns:
list of measurements and list/CameraSet object for cameras
"""
Expand All @@ -66,14 +87,15 @@ def generate_measurements(self, calibration, camera_model, cal_params, camera_se

return measurements, cameras

def test_TriangulationExample(self):
""" Tests triangulation with shared Cal3_S2 calibration"""
def test_TriangulationExample(self) -> None:
"""Tests triangulation with shared Cal3_S2 calibration"""
# Some common constants
sharedCal = (1500, 1200, 0, 640, 480)

measurements, _ = self.generate_measurements(Cal3_S2,
PinholeCameraCal3_S2,
(sharedCal, sharedCal))
measurements, _ = self.generate_measurements(
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(sharedCal, sharedCal))

triangulated_landmark = gtsam.triangulatePoint3(self.poses,
Cal3_S2(sharedCal),
Expand All @@ -95,40 +117,107 @@ def test_TriangulationExample(self):

self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)

def test_distinct_Ks(self):
""" Tests triangulation with individual Cal3_S2 calibrations """
def test_distinct_Ks(self) -> None:
"""Tests triangulation with individual Cal3_S2 calibrations"""
# two camera parameters
K1 = (1500, 1200, 0, 640, 480)
K2 = (1600, 1300, 0, 650, 440)

measurements, cameras = self.generate_measurements(Cal3_S2,
PinholeCameraCal3_S2,
(K1, K2),
camera_set=CameraSetCal3_S2)
measurements, cameras = self.generate_measurements(
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(K1, K2),
camera_set=CameraSetCal3_S2)

triangulated_landmark = gtsam.triangulatePoint3(cameras,
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)

def test_distinct_Ks_Bundler(self):
""" Tests triangulation with individual Cal3Bundler calibrations"""
def test_distinct_Ks_Bundler(self) -> None:
"""Tests triangulation with individual Cal3Bundler calibrations"""
# two camera parameters
K1 = (1500, 0, 0, 640, 480)
K2 = (1600, 0, 0, 650, 440)

measurements, cameras = self.generate_measurements(Cal3Bundler,
PinholeCameraCal3Bundler,
(K1, K2),
camera_set=CameraSetCal3Bundler)
measurements, cameras = self.generate_measurements(
calibration=Cal3Bundler,
camera_model=PinholeCameraCal3Bundler,
cal_params=(K1, K2),
camera_set=CameraSetCal3Bundler)

triangulated_landmark = gtsam.triangulatePoint3(cameras,
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)

def test_triangulation_robust_three_poses(self) -> None:
"""Ensure triangulation with a robust model works."""
sharedCal = Cal3_S2(1500, 1200, 0, 640, 480)

# landmark ~5 meters infront of camera
landmark = Point3(5, 0.5, 1.2)

pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0))
pose3 = pose1 * Pose3(Rot3.Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -0.1))

camera1 = PinholeCameraCal3_S2(pose1, sharedCal)
camera2 = PinholeCameraCal3_S2(pose2, sharedCal)
camera3 = PinholeCameraCal3_S2(pose3, sharedCal)

z1: Point2 = camera1.project(landmark)
z2: Point2 = camera2.project(landmark)
z3: Point2 = camera3.project(landmark)

poses = gtsam.Pose3Vector([pose1, pose2, pose3])
measurements = Point2Vector([z1, z2, z3])

# noise free, so should give exactly the landmark
actual = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))

# Add outlier
measurements[0] += Point2(100, 120) # very large pixel noise!

# now estimate does not match landmark
actual2 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)

# Again with nonlinear optimization
actual3 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True)
# result from nonlinear (but non-robust optimization) is close to DLT and still off
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))

# Again with nonlinear optimization, this time with robust loss
model = gtsam.noiseModel.Robust.Create(
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
gtsam.noiseModel.Unit.Create(2))
actual4 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True,
model=model)
# using the Huber loss we now have a quite small error!! nice!
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))


if __name__ == "__main__":
unittest.main()

0 comments on commit aef2a39

Please sign in to comment.