Skip to content

chapter5_part1: /50_Search/00_Intro.asciidoc #9

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 16 commits into from
63 changes: 23 additions & 40 deletions 050_Search/00_Intro.asciidoc
Original file line number Diff line number Diff line change
@@ -1,60 +1,43 @@
[[search]]
== Searching--The Basic Tools
== 搜索——最基本的工具

So far, we have learned how to use Elasticsearch as a simple NoSQL-style
distributed document store. We can ((("searching")))throw JSON documents at Elasticsearch and
retrieve each one by ID. But the real power of Elasticsearch lies in its
ability to make sense out of chaos -- to turn Big Data into Big Information.
现在,我们已经学会了如何使用 Elasticsearch 作为一个简单的 NoSQL 风格的分布式文档存储系统。我们可以((("searching")))将一个 JSON 文档扔到 Elasticsearch 里,然后根据 ID 检索。但 Elasticsearch 真正强大之处在于可以从无规律的数据中找出有意义的信息——从“大数据”到“大信息”。

This is the reason that we use structured JSON documents, rather than
amorphous blobs of data. Elasticsearch not only _stores_ the document, but
also _indexes_ the content of the document in order to make it searchable.
Elasticsearch 不只会_存储(stores)_ 文档,为了能被搜索到也会为文档添加_索引(indexes)_ ,这也是为什么我们使用结构化的 JSON 文档,而不是无结构的二进制数据。

_Every field in a document is indexed and can be queried_. ((("indexing"))) And it's not just
that. During a single query, Elasticsearch can use _all_ of these indices, to
return results at breath-taking speed. That's something that you could never
consider doing with a traditional database.
_文档中的每个字段都将被索引并且可以被查询_ 。((("indexing")))不仅如此,在简单查询时,Elasticsearch 可以使用 _所有(all)_ 这些索引字段,以惊人的速度返回结果。这是你永远不会考虑用传统数据库去做的一些事情。

A _search_ can be any of the following:
_搜索(search)_ 可以做到:

* A structured query on concrete fields((("fields", "searching on")))((("searching", "types of searches"))) like `gender` or `age`, sorted by
a field like `join_date`, similar to the type of query that you could construct
in SQL
* 在类似于 `gender` 或者 `age` 这样的字段((("fields", "searching on")))((("searching", "types of searches")))上使用结构化查询,`join_date` 这样的字段上使用排序,就像SQL的结构化查询一样。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL 两边空格


* A full-text query, which finds all documents matching the search keywords,
and returns them sorted by _relevance_
* 全文检索,找出所有匹配关键字的文档并按照_相关性(relevance)_ 排序后返回结果。

* A combination of the two
* 以上二者兼而有之。

While many searches will just work out of((("full text search"))) the box, to use Elasticsearch to
its full potential, you need to understand three subjects:
很多搜索都是开箱即用的((("full text search"))),为了充分挖掘 Elasticsearch 的潜力,你需要理解以下三个概念:

_Mapping_::
How the data in each field is interpreted

_Analysis_::
How full text is processed to make it searchable

_Query DSL_::
The flexible, powerful query language used by Elasticsearch
_映射(Mapping)_ ::
描述数据在每个字段内如何存储

Each of these is a big subject in its own right, and we explain them in
detail in <<search-in-depth>>. The chapters in this section introduce the
basic concepts of all three--just enough to help you to get an overall
understanding of how search works.
_分析(Analysis)_ ::
全文是如何处理使之可以被搜索的

We will start by explaining the `search` API in its simplest form.
_领域特定查询语言(Query DSL)_ ::
Elasticsearch 中强大灵活的查询语言

.Test Data
以上提到的每个点都是一个大话题,我们将在 <<search-in-depth>> 一章详细阐述它们。本章节我们将介绍这三点的一些基本概念——仅仅帮助你大致了解搜索是如何工作的。

我们将使用最简单的形式开始介绍 `search` API。

.测试数据

****
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

#5 我们将_Analysis_译作了分词
还是前后统一一下比较好。

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已经加到sheet中~~


The documents that we will use for test purposes in this chapter can be found
in this gist: https://gist.github.com/clintongormley/8579281.
本章节的测试数据可以在这里找到: https://gist.github.com/clintongormley/8579281 。

You can copy the commands and paste them into your shell in order to follow
along with this chapter.
你可以把这些命令复制到终端中执行来实践本章的例子。

Alternatively, if you're in the online version of this book, you can link:sense_widget.html?snippets/050_Search/Test_data.json[click here to open in Sense].
另外,如果你读的是在线版本,可以 link:sense_widget.html?snippets/050_Search/Test_data.json[点击这个链接] 感受下。

****
Loading