Skip to content
This repository has been archived by the owner on Oct 3, 2024. It is now read-only.

[Download] Pre-built GVT+Dmabuf QEMU package for Archlinux #20

Closed
XaeroVincent opened this issue Feb 13, 2018 · 56 comments
Closed

[Download] Pre-built GVT+Dmabuf QEMU package for Archlinux #20

XaeroVincent opened this issue Feb 13, 2018 · 56 comments

Comments

@XaeroVincent
Copy link

XaeroVincent commented Feb 13, 2018

Update: Please use Linux 4.16rc2 or newer kernels to have the kernel-side GVT + Dmabuf components. A patched QEMU is still needed.

I went ahead and packaged up QEMU 2.10 with GVT-g and Dmabuf support that I compiled on my system. The QEMU package is hosted on my OneDrive account. This package is only designed for use with Archlinux and derivative distributions and can be installed with 'pacman -U'. Be sure to follow the applicable parts of the official guide and add the proper qemu and kernel boot options for VFIO GPU passthrough to work.

Download (Built from 'stable-2.10.0' git as of 2/20/2018):
https://1drv.ms/u/s!Am9uPEIZtbF9g1vFKo3-yNuiU8Vb

Optional: Source code

@DocMAX
Copy link

DocMAX commented Feb 13, 2018

PERFECT!!! Thank you very much my friend!!! Will try later on a 3rd gen X1 Carbon ThinkPad (Broadwell) and Report back. Can you try a Q35 machine Setup with OVMF to see if it works?

Perhaps we can add gvt kernel + gvt qemu in the AUR repo? Wondering why there isn't allready one.

@ghost
Copy link

ghost commented Feb 13, 2018

That's great. Will try and report how it worked soon.

@DocMAX
Copy link

DocMAX commented Feb 13, 2018

I get:

(123..) ioctl VFIO_DEVICE_QUERY_GFX_PLANE(primary): Invalid arument

On QEMU display i see "Guest has not initialized the display (yet)

@XaeroVincent
Copy link
Author

XaeroVincent commented Feb 13, 2018

DocMAX, Qemu will say that until the Windows guest is booted and the Intel guest driver is initialized.

I ended up using '-vga qxl' to install the quest and get everything up and running first. It's also a good idea to use Display Driver Uninstaller in safe mode to remove the default installed Windows Intel GFX drivers, which can cause BSOD in the guest with VFIO.

https://www.wagnardsoft.com/

After you install the official 15.45 or 15.65 Intel graphics drivers from Intels website, then you can change it back to '-vga none'. Be sure to shutdown the guest before making changes, of course.

@DocMAX
Copy link

DocMAX commented Feb 13, 2018

XaeroVincent, can you please check if Q35 and OVMF works on your system?

@XaeroVincent
Copy link
Author

XaeroVincent commented Feb 14, 2018

Q35 machine profile works but re-installing the guest with OVMF/Tianocore UEFI seems to break the Dmabuf support. I guess we'll just have to use the default QEMU SeaBIOS with Q35/ICH9 or the default I440FX chipset emulation until that's fixed? Maybe one of the Intel devs can investigate this.

BTW, if you are having garbled /staticky sound, if using the HDA sound device in QEMU (when using the pulseaudio sound driver), setting the Windows playback device sample rate to 44100 Hz seems to clear it up. I think it's because default pulseaudio server sample rate on Linux is set to 44100 Hz.

@DocMAX
Copy link

DocMAX commented Feb 15, 2018

I'm trying to run macOS with GVT-g. At the moment i get this error. maybe someone tries to accomplish the same and share findings.

[IGPU] Graphics driver failed to load:could not register with Framebuffer driver

@XaeroVincent
Copy link
Author

XaeroVincent commented Feb 15, 2018

Well in addition to the host Linux kernel and QEMU needing modifications for GVT, the guest graphics drivers also need modifications to support GVT. It has been mentioned by a dev on here that the Linux and Windows drivers have said support. However, there is no reason to believe that the built-in macOS graphics drivers also contain this support too, since IIRC, Apple's EULA only permits macOS virtualization guests on macOS hosts, running on Macintosh systems and this project's scope doesn't seem to encompass macOS host use cases.

@oscarbg
Copy link

oscarbg commented Feb 16, 2018

@XaeroVincent some questions:

1)Phoronix says all needed kernel bits are in 4.16 (in 4.16rc1 already?).. it's true?
I installed it on ubuntu form kernel ppa (http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.16-rc1/)
in case yes.. 4.16 kernel has to have any non default kernel option enabled at build?
I say because I can see in /boot/config-4.16.0-041600rc1-generic file if Ubuntu is enabling that option..

regarding Qemu phoronix says it will probably be upstreamed in 2.12 already..
anybody seeing this thread can say if it's expected to be true, i.e. that's the plan?
if yes then can probably wait a month for first RC builds and non build custom Qemu branch..

  1. any interest on doing the same for Ubuntu.. ie. provide precompiled packages via .deb files or setup a PPA?

  2. have you tested some modern Android x86 ISO (ex: http://www.android-x86.org/releases/releasenote-7-1-r1) to see if all this works also in addition to Linux and Windows..
    it should work as they ship with modern Linux kernel and Mesa drivers underneath..
    7.1r1 ships with:
    LTS kernel 4.9.80
    notes from older 7.1rc1:
    *Support OpenGL ES 3.x hardware acceleration for Intel/AMD/Nvidia, VMware and QEMU(virgl) by Mesa 17.1.2.
    from 7.1rc2:
    *Improve QEMU virgl stability.
    *Update Mesa to 17.1.10

if that not recent enough you can test Android 8.1 (Oreo) experimental builds provided by @maurossi here:
https://drive.google.com/drive/folders/0B_OFHiIqgpSFTFpkQWc1eXV3ME0
which ship with latest kernel 4.16rc1+Mesa18.1dev using LLVM6.0 for amdgpu..

please someone share findings of success using Android x86 as guest..

@oscarbg
Copy link

oscarbg commented Feb 17, 2018

Thanks for all info..
Sadly anbox seems to have issues on Ubuntu.. tried various times within a year and never worked for me or much other people.. anbox github issues site is full of people on recent Ubuntu versions having anbox dont’ working..
Also sad is Android x86 ISO’s have opengl es 3.2 support so very recent apps work.. and the latest Oreo iso even has vulkan Anvil support albeit don’t working for many apps only vulkancapsviwer.. that can’t be done very fast by anbox people.. even Android emulator started recently having gles 3.0 support.. and last also even beignet Intel opencl driver support Android although no Android x86 ISOs currently include it in future could be.. there are some apps using in on store.. finally even hardware accel video decding via va API (and encoding?) is included on Isos.. so Intel must support it.. now I remember someone sometime ago used gvt on Andrroid x86 so maybe what you are referring need X.org conf is for new dma_buf functionality we are talking after all, right?

@oscarbg
Copy link

oscarbg commented Feb 17, 2018

I just opened an issue:
intel/Igvtg-qemu#3
asking if QEMU GVT dma_buf support will be ready for QEMU 2.12..

@newperson1746
Copy link

newperson1746 commented Feb 18, 2018

I have macOS High Sierra as well (real mac, actually on ubuntu 16.04.3) it is a macbookair with hd 6000 (bdw) graphics. Since the dma-buf doesn't seem to work (for me, it just says cursor plane not initialized by guest) I have -serial stdio with tianocore uefi, which allows me to navigate clover bootloader via the serial port! Then I just wait a long time until macos boots, and I get this: (via port forwarding 5900 to 5800 for screen sharing host-side) screenshot from 2018-02-18 11-11-33 since the dma-buf doesn't work, I just use macos screen sharing. As you can see, the bdw kexts are loaded, but, just like a real headless mac, unless there is an edid detected on a port, qe/ci still gets disabled. We are really close here, all that needs to happen is: a) get the dma-buf to work with tianocore uefi, or b) we get clover to fake a display. b) is actually possible, we can inject an edid (meant for laptops with monitor issues) which will trick appleintelbdwgraphics into enabling acceleration, and we screen-share in until dma-buf works wiith uefi. Note: this is all on real macbookair7,2...

@DocMAX
Copy link

DocMAX commented Feb 18, 2018

Great! Keep me posted on any updates! Can't wait to see dma-buf working stable on OSX guest!

@newperson1746
Copy link

I'm gonna try InjectEDID and CustomEDID to see if I can at least trick macOS into acceleration remotely. I know, I can't wait either. This will be the first time a virtualized macOS has qe/ci without dedicating a vfio-pci gpu for it.

@newperson1746
Copy link

Also, while I try and debug macOS, to get a serial console: add -serial telnet:127.0.0.1:4444,server,nowait to qemu, and macos boot-args="debug=0x8 console=3" will give you a console on serial port on macos.

@newperson1746
Copy link

I posted an issue about dma-buf not working (black screen) on ubuntu. If I had arch I could be testing this right now, but I am out of storage.

@ozeidan
Copy link

ozeidan commented Feb 18, 2018

Hi guys, could anybody explain how to use this from virt-manager?
I added to my windows10.xml:

<qemu:commandline>
    <qemu:arg value='-device'/>
    <qemu:arg value='vfio-pci,sysfsdev=/sys/bus/pci/devices/0000:00:02.0/6f8c2453-2896-4cb3-82ce-c2bbdcb943de,rombar=0'/>
</qemu:commandline>

It fails with errormessage:

qemu-system-x86_64: -device vfio-pci,sysfsdev=/sys/bus/pci/devices/0000:00:02.0/6f8c2453-2896-4cb3-82ce-c2bbdcb943de,rombar=0: vfio error: 6f8c2453-2896-4cb3-82ce-c2bbdcb943de: failed to open /dev/vfio/0: Operation not permitted

When starting with qemu directly, it seems to start fine. But I am too dumb to setup the networking in qemu. (Or maybe it doesn't work on my machine because libvirt already set up some networking stuff.) I would really appreciate help on this. Thanks

@DocMAX
Copy link

DocMAX commented Feb 18, 2018

try to add a udev rule like this: SUBSYSTEM=="vfio", OWNER="root", GROUP="kvm"

@XaeroVincent
Copy link
Author

XaeroVincent commented Feb 18, 2018

Newperson1746 ,

That's impressive Newperson1746! I stand corrected.
Dma-Buf doesn't appear to support QEMU UEFI yet, only SeaBIOS.

Perhaps one thing you can try is to patch your macOS guest to run on BIOS+MBR based partitions then macOS can boot with QEMU using SeaBIOS?

http://www.insanelymac.com/forum/files/file/762-high-sierra-mbr-and-firmware-check-patch/?st=50#commentsStart

@newperson1746
Copy link

I will try that. However, even with seabios, this does not work. I posted all the info on a new issue, so that it can be better organized.

@newperson1746
Copy link

newperson1746 commented Feb 19, 2018

Ok. I stand corrected myself. With a copy of Android Oreo, the virtual gpu works fine in both UEFI grubx64.efi with OVMF and the regular isolinux (i think.) What happens is that i915_drm (I think) is loaded way early in boot, therefore allowing me to see the linux kernel booting. In macOS however, the driver gets loaded but doesn't know what to do beyond that, it just sees an HD 6000 without any display outputs, and disables OpenGL (same issue as headless macs, google it.) In early boot, macOS utilizes the EFI framebuffer console to output text/graphics, not the gpu-specific driver, as apple can expect its hardware to have the efi framebuffer available. Apple_ would need to explicitly support dma-buf in their drivers too, which is a virtually unrealistic expectation of them. I don't know whether or not intel compiles or has access to the source code for "GPUDrivers-Intel" (internal name in binary kext, I used grep to find it). If they do, I hope they can add support, because as of right now, it does not work (unless on the qemu-side of things the developers implement the dma-buf display output as a standard HDMI/DP/VGA output with an EDID attached, as that is what the macOS drivers are expecting/checking for) If somehow we can make the VGPU available as a standard display output that is then dma-buffed to qemu, then acceleration will work. If we can trick macOS into thinking a display is there and enabling OpenGL, we can screenshare into macOS and access the GPU as well, just like the old way in Windows (before dma-buf worked.) So there's three paths:

  1. Add an option for dma-buf to appear as a standard display output with a standard EDID attached to a "physical" display output port, thereby not only allowing macOS/non-specifically fixed drivers to use gvtg, but also allowing UEFI/BIOS POST screens to work, as then gvtg would then support the basic EFI framebuffer/vesa modes, or...
  2. Fix the macOS intel gpu drivers themselves, which is the way it is currently done on linux and windows. This is why you have to wait for the OS drivers to initialize. Because the drivers themselves handle output to dma-buf, not qemu. (So dma-buf is a special output mode, not masquerading as an HDMI out or similar) However I do not think Apple would be willing to do this, considering their past history. lastly...
  3. Trick macOS (and drivers) into enabling OpenGL for the headless virtual display that is there for screensharing purposes. By default if macOS sees no physical displays then it creates a virtual framebuffer with a resolution of 1280x1024, but disables OpenGL, thereby making the menubar lose its translucency and the dock lose its transparency effects. (I can currently get that far, macOS boots with HD 6000 graphics loaded and drivers loaded, but we have the "headless mac" issue that occurs with real macs if headless, except that we cannot use a headless fake display HDMI adapter or etc) If we can trick macOS into thinking there's a physical display attached, we can then screen-share into macOS itself and access full QE/CI. (Even if we can't directly see the "tricked" display's output, we can access its framebuffer which does have QE/CI enabled)
    Hope that clarifies things. I am not even a developer, so this is all gathered from observation, however I'm sure a quick glance at i915 code would either prove or disprove this.

@oscarbg
Copy link

oscarbg commented Feb 19, 2018

@newperson1746
are you telling me that Oreo ISO works out the box? In LIVE MODE also (without installing to a virtual disk)? if yes the we have good news for today.. also what ISO? are using the experimental ISO "oreo_x86_64_k416rc1_amd_dc_llvm60_mesa-18.1.0devel_vulkan.iso" I linked in earlier post?

@newperson1746
Copy link

Yes, sir. Exactly that one, if booted live, or installed, will work OOB. I will provide a screenshot, one sec.

@oscarbg
Copy link

oscarbg commented Feb 19, 2018

@newperson1746 great!!!
can I please ask to include a screenshot of VulkanCapsViewer app from Play store (https://play.google.com/store/apps/details?id=de.saschawillems.vulkancapsviewer) to see Vulkan driver from this ISO is working correctly under GVT-g and also one of either OpenGL extensions Viewer app or
https://play.google.com/store/apps/details?id=de.saschawillems.glescapsviewer to see identifies corerctly as Mesa 18.1dev with OpenGL ES 3.2 support..

@newperson1746
Copy link

newperson1746 commented Feb 19, 2018

sure one sec. screenshot:
screenshot from 2018-02-18 20-31-21
(oops 1920x1200 framebuffer is larger than my little laptop screen)

@oscarbg
Copy link

oscarbg commented Feb 19, 2018

@newperson1746 I'm not fluent enough in all this tech.. may I ask you to provide complete qemu arguments list to test that ISO is working on my system with Ubuntu 18.04dev+ 4.16rc1 +custom built QEMU+dma_buf by myself?

@newperson1746
Copy link

I switched out to the 1024x768 one. I'm setting up. One sec please.

@newperson1746
Copy link

opengles extensions: right here
vulkan:
screenshot from 2018-02-18 20-45-35
screenshot from 2018-02-18 20-47-10
screenshot from 2018-02-18 20-47-26
(vulkan crashed when submitting report)

@oscarbg
Copy link

oscarbg commented Feb 19, 2018

@newperson1746 thanks for being so fast.. note vulkan support is very early and even on native mode crashes sending submitting report.. it's says something about extensions string parsing right?

@newperson1746
Copy link

I am installing it, upgrading my 7.0 install so I can use vgpu. just a few minutes, I apologize for the delay. (But i want to be able to save apps i installed, not go away on reboot)

@memegauste
Copy link

memegauste commented Sep 1, 2018

I have similar issue here:
#48

Also I installed Intel driver inside, but was messing with monitor settings and... this happened.
Probably vfio-pci is not working at all, since it gets detected (what other device as display would be detected and gave black screen on GTK display?), so I can't do anything on my vm.

Screenshot on qxl-vga:
obraz
Screenshot on vfio-pci:
obraz
My config:

#!/bin/sh

# QEMU
qemu-system-x86_64 \
        -enable-kvm \
        -m 4G \
        -smp cores=2,threads=1,sockets=1,maxcpus=2 \
        -machine type=pc,accel=kvm,kernel_irqchip=on \
        -global PIIX4_PM.disable_s3=1 \
        -global PIIX4_PM.disable_s4=1 \
        -name windows10-gvt-g \
        -soundhw ac97 \
        -usb \
        -device usb-tablet \
        -display gtk,gl=on \
        -device vfio-pci,sysfsdev=/sys/devices/pci0000:00/0000:00:02.0/56fdd4da-ade1-11e8-98d0-529269fb1459,x-igd-opregion=on,display=on \
        -drive file=/home/hoshi/windows10/win10.qcow2,format=qcow2,l2-cache-size=8M \
        -cdrom /home/hoshi/windows10/win_install.iso \
        -vga qxl \
        -drive if=pflash,format=raw,readonly,file=/usr/share/ovmf/x64/OVMF_CODE.fd \
        -drive if=pflash,format=raw,file=/usr/share/ovmf/x64/OVMF_VARS.fd

zhenyw pushed a commit that referenced this issue Nov 19, 2018
Increase kasan instrumented kernel stack size from 32k to 64k. Other
architectures seems to get away with just doubling kernel stack size under
kasan, but on s390 this appears to be not enough due to bigger frame size.
The particular pain point is kasan inlined checks (CONFIG_KASAN_INLINE
vs CONFIG_KASAN_OUTLINE). With inlined checks one particular case hitting
stack overflow is fs sync on xfs filesystem:

 #0 [9a0681e8]  704 bytes  check_usage at 34b1fc
 #1 [9a0684a8]  432 bytes  check_usage at 34c710
 #2 [9a068658]  1048 bytes  validate_chain at 35044a
 #3 [9a068a70]  312 bytes  __lock_acquire at 3559fe
 #4 [9a068ba8]  440 bytes  lock_acquire at 3576ee
 #5 [9a068d60]  104 bytes  _raw_spin_lock at 21b44e0
 #6 [9a068dc8]  1992 bytes  enqueue_entity at 2dbf72
 #7 [9a069590]  1496 bytes  enqueue_task_fair at 2df5f0
 #8 [9a069b68]  64 bytes  ttwu_do_activate at 28f438
 #9 [9a069ba8]  552 bytes  try_to_wake_up at 298c4c
 #10 [9a069dd0]  168 bytes  wake_up_worker at 23f97c
 #11 [9a069e78]  200 bytes  insert_work at 23fc2e
 #12 [9a069f40]  648 bytes  __queue_work at 2487c0
 #13 [9a06a1c8]  200 bytes  __queue_delayed_work at 24db28
 #14 [9a06a290]  248 bytes  mod_delayed_work_on at 24de84
 #15 [9a06a388]  24 bytes  kblockd_mod_delayed_work_on at 153e2a0
 #16 [9a06a3a0]  288 bytes  __blk_mq_delay_run_hw_queue at 158168c
 #17 [9a06a4c0]  192 bytes  blk_mq_run_hw_queue at 1581a3c
 #18 [9a06a580]  184 bytes  blk_mq_sched_insert_requests at 15a2192
 #19 [9a06a638]  1024 bytes  blk_mq_flush_plug_list at 1590f3a
 #20 [9a06aa38]  704 bytes  blk_flush_plug_list at 1555028
 #21 [9a06acf8]  320 bytes  schedule at 219e476
 #22 [9a06ae38]  760 bytes  schedule_timeout at 21b0aac
 #23 [9a06b130]  408 bytes  wait_for_common at 21a1706
 #24 [9a06b2c8]  360 bytes  xfs_buf_iowait at fa1540
 #25 [9a06b430]  256 bytes  __xfs_buf_submit at fadae6
 #26 [9a06b530]  264 bytes  xfs_buf_read_map at fae3f6
 #27 [9a06b638]  656 bytes  xfs_trans_read_buf_map at 10ac9a8
 #28 [9a06b8c8]  304 bytes  xfs_btree_kill_root at e72426
 #29 [9a06b9f8]  288 bytes  xfs_btree_lookup_get_block at e7bc5e
 #30 [9a06bb18]  624 bytes  xfs_btree_lookup at e7e1a6
 #31 [9a06bd88]  2664 bytes  xfs_alloc_ag_vextent_near at dfa070
 #32 [9a06c7f0]  144 bytes  xfs_alloc_ag_vextent at dff3ca
 #33 [9a06c880]  1128 bytes  xfs_alloc_vextent at e05fce
 #34 [9a06cce8]  584 bytes  xfs_bmap_btalloc at e58342
 #35 [9a06cf30]  1336 bytes  xfs_bmapi_write at e618de
 #36 [9a06d468]  776 bytes  xfs_iomap_write_allocate at ff678e
 #37 [9a06d770]  720 bytes  xfs_map_blocks at f82af8
 #38 [9a06da40]  928 bytes  xfs_writepage_map at f83cd6
 #39 [9a06dde0]  320 bytes  xfs_do_writepage at f85872
 #40 [9a06df20]  1320 bytes  write_cache_pages at 73dfe8
 #41 [9a06e448]  208 bytes  xfs_vm_writepages at f7f892
 #42 [9a06e518]  88 bytes  do_writepages at 73fe6a
 #43 [9a06e570]  872 bytes  __writeback_single_inode at a20cb6
 #44 [9a06e8d8]  664 bytes  writeback_sb_inodes at a23be2
 #45 [9a06eb70]  296 bytes  __writeback_inodes_wb at a242e0
 #46 [9a06ec98]  928 bytes  wb_writeback at a2500e
 #47 [9a06f038]  848 bytes  wb_do_writeback at a260ae
 #48 [9a06f388]  536 bytes  wb_workfn at a28228
 #49 [9a06f5a0]  1088 bytes  process_one_work at 24a234
 #50 [9a06f9e0]  1120 bytes  worker_thread at 24ba26
 #51 [9a06fe40]  104 bytes  kthread at 26545a
 #52 [9a06fea8]             kernel_thread_starter at 21b6b62

To be able to increase the stack size to 64k reuse LLILL instruction
in __switch_to function to load 64k - STACK_FRAME_OVERHEAD - __PT_SIZE
(65192) value as unsigned.

Reported-by: Benjamin Block <bblock@linux.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
zhenyw pushed a commit that referenced this issue Nov 19, 2018
When IDLETIMER rule is added, sysfs file is created under
/sys/class/xt_idletimer/timers/
But some label name shouldn't be used.
".", "..", "power", "uevent", "subsystem", etc...
So that sysfs filename checking routine is needed.

test commands:
   %iptables -I INPUT -j IDLETIMER --timeout 1 --label "power"

splat looks like:
[95765.423132] sysfs: cannot create duplicate filename '/devices/virtual/xt_idletimer/timers/power'
[95765.433418] CPU: 0 PID: 8446 Comm: iptables Not tainted 4.19.0-rc6+ #20
[95765.449755] Call Trace:
[95765.449755]  dump_stack+0xc9/0x16b
[95765.449755]  ? show_regs_print_info+0x5/0x5
[95765.449755]  sysfs_warn_dup+0x74/0x90
[95765.449755]  sysfs_add_file_mode_ns+0x352/0x500
[95765.449755]  sysfs_create_file_ns+0x179/0x270
[95765.449755]  ? sysfs_add_file_mode_ns+0x500/0x500
[95765.449755]  ? idletimer_tg_checkentry+0x3e5/0xb1b [xt_IDLETIMER]
[95765.449755]  ? rcu_read_lock_sched_held+0x114/0x130
[95765.449755]  ? __kmalloc_track_caller+0x211/0x2b0
[95765.449755]  ? memcpy+0x34/0x50
[95765.449755]  idletimer_tg_checkentry+0x4e2/0xb1b [xt_IDLETIMER]
[ ... ]

Fixes: 0902b46 ("netfilter: xtables: idletimer target implementation")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
zhenyw pushed a commit that referenced this issue Nov 29, 2018
Currently on driver bringup with KASAN enabled, meson triggers an OOB
memory access as shown below:

[  117.904528] ==================================================================
[  117.904560] BUG: KASAN: global-out-of-bounds in meson_viu_set_osd_lut+0x7a0/0x890
[  117.904588] Read of size 4 at addr ffff20000a63ce24 by task systemd-udevd/498
[  117.904601]
[  118.083372] CPU: 4 PID: 498 Comm: systemd-udevd Not tainted 4.20.0-rc3Lyude-Test+ #20
[  118.091143] Hardware name: amlogic khadas-vim2/khadas-vim2, BIOS 2018.07-rc2-armbian 09/11/2018
[  118.099768] Call trace:
[  118.102181]  dump_backtrace+0x0/0x3e8
[  118.105796]  show_stack+0x14/0x20
[  118.109083]  dump_stack+0x130/0x1c4
[  118.112539]  print_address_description+0x60/0x25c
[  118.117214]  kasan_report+0x1b4/0x368
[  118.120851]  __asan_report_load4_noabort+0x18/0x20
[  118.125566]  meson_viu_set_osd_lut+0x7a0/0x890
[  118.129953]  meson_viu_init+0x10c/0x290
[  118.133741]  meson_drv_bind_master+0x474/0x748
[  118.138141]  meson_drv_bind+0x10/0x18
[  118.141760]  try_to_bring_up_master+0x3d8/0x768
[  118.146249]  component_add+0x214/0x570
[  118.149978]  meson_dw_hdmi_probe+0x18/0x20 [meson_dw_hdmi]
[  118.155404]  platform_drv_probe+0x98/0x138
[  118.159455]  really_probe+0x2a0/0xa70
[  118.163070]  driver_probe_device+0x1b4/0x2d8
[  118.167299]  __driver_attach+0x200/0x280
[  118.171189]  bus_for_each_dev+0x10c/0x1a8
[  118.175144]  driver_attach+0x38/0x50
[  118.178681]  bus_add_driver+0x330/0x608
[  118.182471]  driver_register+0x140/0x388
[  118.186361]  __platform_driver_register+0xc8/0x108
[  118.191117]  meson_dw_hdmi_platform_driver_init+0x1c/0x1000 [meson_dw_hdmi]
[  118.198022]  do_one_initcall+0x12c/0x3bc
[  118.201883]  do_init_module+0x1fc/0x638
[  118.205673]  load_module+0x4b4c/0x6808
[  118.209387]  __se_sys_init_module+0x2e8/0x3c0
[  118.213699]  __arm64_sys_init_module+0x68/0x98
[  118.218100]  el0_svc_common+0x104/0x210
[  118.221893]  el0_svc_handler+0x48/0xb8
[  118.225594]  el0_svc+0x8/0xc
[  118.228429]
[  118.229887] The buggy address belongs to the variable:
[  118.235007]  eotf_33_linear_mapping+0x84/0xc0
[  118.239301]
[  118.240752] Memory state around the buggy address:
[  118.245522]  ffff20000a63cd00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[  118.252695]  ffff20000a63cd80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[  118.259850] >ffff20000a63ce00: 00 00 00 00 04 fa fa fa fa fa fa fa 00 00 00 00
[  118.267000]                                ^
[  118.271222]  ffff20000a63ce80: 00 fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
[  118.278393]  ffff20000a63cf00: 00 00 00 00 00 00 00 00 00 00 00 00 04 fa fa fa
[  118.285542] ==================================================================
[  118.292699] Disabling lock debugging due to kernel taint

It seems that when looping through the OSD EOTF LUT maps, we use the
same max iterator for OETF: 20. This is wrong though, since 20*2 is 40,
which means that we'll stop out of bounds on the EOTF maps.

But, this whole thing is already confusing enough to read through as-is,
so let's just replace all of the hardcoded sizes with
OSD_(OETF/EOTF)_LUT_SIZE / 2.

Signed-off-by: Lyude Paul <lyude@redhat.com>
Fixes: bbbe775 ("drm: Add support for Amlogic Meson Graphic Controller")
Cc: Neil Armstrong <narmstrong@baylibre.com>
Cc: Maxime Ripard <maxime.ripard@bootlin.com>
Cc: Carlo Caione <carlo@caione.org>
Cc: Kevin Hilman <khilman@baylibre.com>
Cc: dri-devel@lists.freedesktop.org
Cc: linux-amlogic@lists.infradead.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: <stable@vger.kernel.org> # v4.10+
Acked-by: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20181125012117.31915-1-lyude@redhat.com
Signed-off-by: Sean Paul <seanpaul@chromium.org>
zhenyw pushed a commit that referenced this issue Mar 25, 2019
…r-free issue

The evlist should be destroyed before the perf session.

Detected with gcc's ASan:

  =================================================================
  ==27350==ERROR: AddressSanitizer: heap-use-after-free on address 0x62b000002e38 at pc 0x5611da276999 bp 0x7ffce8f1d1a0 sp 0x7ffce8f1d190
  WRITE of size 8 at 0x62b000002e38 thread T0
      #0 0x5611da276998 in __list_del /home/work/linux/tools/include/linux/list.h:89
      #1 0x5611da276d4a in __list_del_entry /home/work/linux/tools/include/linux/list.h:102
      #2 0x5611da276e77 in list_del_init /home/work/linux/tools/include/linux/list.h:145
      #3 0x5611da2781cd in thread__put util/thread.c:130
      #4 0x5611da2cc0a8 in __thread__zput util/thread.h:68
      #5 0x5611da2d2dcb in hist_entry__delete util/hist.c:1148
      #6 0x5611da2cdf91 in hists__delete_entry util/hist.c:337
      #7 0x5611da2ce19e in hists__delete_entries util/hist.c:365
      #8 0x5611da2db2ab in hists__delete_all_entries util/hist.c:2639
      #9 0x5611da2db325 in hists_evsel__exit util/hist.c:2651
      #10 0x5611da1c5352 in perf_evsel__exit util/evsel.c:1304
      #11 0x5611da1c5390 in perf_evsel__delete util/evsel.c:1309
      #12 0x5611da1b35f0 in perf_evlist__purge util/evlist.c:124
      #13 0x5611da1b38e2 in perf_evlist__delete util/evlist.c:148
      #14 0x5611da069781 in cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1645
      #15 0x5611da17d038 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302
      #16 0x5611da17d577 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354
      #17 0x5611da17d97b in run_argv /home/changbin/work/linux/tools/perf/perf.c:398
      #18 0x5611da17e0e9 in main /home/changbin/work/linux/tools/perf/perf.c:520
      #19 0x7fdcc970f09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a)
      #20 0x5611d9ff35c9 in _start (/home/work/linux/tools/perf/perf+0x3e95c9)

  0x62b000002e38 is located 11320 bytes inside of 27448-byte region [0x62b000000200,0x62b000006d38)
  freed by thread T0 here:
      #0 0x7fdccb04ab70 in free (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xedb70)
      #1 0x5611da260df4 in perf_session__delete util/session.c:201
      #2 0x5611da063de5 in __cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1300
      #3 0x5611da06973c in cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1642
      #4 0x5611da17d038 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302
      #5 0x5611da17d577 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354
      #6 0x5611da17d97b in run_argv /home/changbin/work/linux/tools/perf/perf.c:398
      #7 0x5611da17e0e9 in main /home/changbin/work/linux/tools/perf/perf.c:520
      #8 0x7fdcc970f09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a)

  previously allocated by thread T0 here:
      #0 0x7fdccb04b138 in calloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee138)
      #1 0x5611da26010c in zalloc util/util.h:23
      #2 0x5611da260824 in perf_session__new util/session.c:118
      #3 0x5611da0633a6 in __cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1192
      #4 0x5611da06973c in cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1642
      #5 0x5611da17d038 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302
      #6 0x5611da17d577 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354
      #7 0x5611da17d97b in run_argv /home/changbin/work/linux/tools/perf/perf.c:398
      #8 0x5611da17e0e9 in main /home/changbin/work/linux/tools/perf/perf.c:520
      #9 0x7fdcc970f09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a)

  SUMMARY: AddressSanitizer: heap-use-after-free /home/work/linux/tools/include/linux/list.h:89 in __list_del
  Shadow bytes around the buggy address:
    0x0c567fff8570: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff8580: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff8590: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff85a0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff85b0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  =>0x0c567fff85c0: fd fd fd fd fd fd fd[fd]fd fd fd fd fd fd fd fd
    0x0c567fff85d0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff85e0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff85f0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff8600: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
    0x0c567fff8610: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  Shadow byte legend (one shadow byte represents 8 application bytes):
    Addressable:           00
    Partially addressable: 01 02 03 04 05 06 07
    Heap left redzone:       fa
    Freed heap region:       fd
    Stack left redzone:      f1
    Stack mid redzone:       f2
    Stack right redzone:     f3
    Stack after return:      f5
    Stack use after scope:   f8
    Global redzone:          f9
    Global init order:       f6
    Poisoned by user:        f7
    Container overflow:      fc
    Array cookie:            ac
    Intra object redzone:    bb
    ASan internal:           fe
    Left alloca redzone:     ca
    Right alloca redzone:    cb
  ==27350==ABORTING

Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190316080556.3075-8-changbin.du@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
@joyqing
Copy link

joyqing commented Jun 27, 2019

Just show the VM MacOS render HW acceleration
image
It's not gvt-g. It's directly iGPU passthrough like RX580. Specs below:
Asrock Z370 Pro4, i7 8700k, rx580, 2080ti, Manjaro kde kernel 5.2, qemu 4.0.0-2, libvirt 5.4.0-1.
pass through rx580+UHD630+SATA. Add -disablefxframware in Clover. SMBios must be iMac pro 1.1. FCPX is 10.4.6 works as same as the host. Only one MacOS partition in HD.Either VM or Host can all boot from the same MacOS par.
Issue: VM POST needs very long time.
This is not fully solution because iGPU doesn't work just acts as "headless". GVT-g is the future. Hope someone can open a new thread to discuss iGPU passthrough for MacOS.

zhenyw pushed a commit that referenced this issue Jul 10, 2019
Current snapshot implementation swaps two ring_buffers even though their
sizes are different from each other, that can cause an inconsistency
between the contents of buffer_size_kb file and the current buffer size.

For example:

  # cat buffer_size_kb
  7 (expanded: 1408)
  # echo 1 > events/enable
  # grep bytes per_cpu/cpu0/stats
  bytes: 1441020
  # echo 1 > snapshot             // current:1408, spare:1408
  # echo 123 > buffer_size_kb     // current:123,  spare:1408
  # echo 1 > snapshot             // current:1408, spare:123
  # grep bytes per_cpu/cpu0/stats
  bytes: 1443700
  # cat buffer_size_kb
  123                             // != current:1408

And also, a similar per-cpu case hits the following WARNING:

Reproducer:

  # echo 1 > per_cpu/cpu0/snapshot
  # echo 123 > buffer_size_kb
  # echo 1 > per_cpu/cpu0/snapshot

WARNING:

  WARNING: CPU: 0 PID: 1946 at kernel/trace/trace.c:1607 update_max_tr_single.part.0+0x2b8/0x380
  Modules linked in:
  CPU: 0 PID: 1946 Comm: bash Not tainted 5.2.0-rc6 #20
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014
  RIP: 0010:update_max_tr_single.part.0+0x2b8/0x380
  Code: ff e8 dc da f9 ff 0f 0b e9 88 fe ff ff e8 d0 da f9 ff 44 89 ee bf f5 ff ff ff e8 33 dc f9 ff 41 83 fd f5 74 96 e8 b8 da f9 ff <0f> 0b eb 8d e8 af da f9 ff 0f 0b e9 bf fd ff ff e8 a3 da f9 ff 48
  RSP: 0018:ffff888063e4fca0 EFLAGS: 00010093
  RAX: ffff888066214380 RBX: ffffffff99850fe0 RCX: ffffffff964298a8
  RDX: 0000000000000000 RSI: 00000000fffffff5 RDI: 0000000000000005
  RBP: 1ffff1100c7c9f96 R08: ffff888066214380 R09: ffffed100c7c9f9b
  R10: ffffed100c7c9f9a R11: 0000000000000003 R12: 0000000000000000
  R13: 00000000ffffffea R14: ffff888066214380 R15: ffffffff99851060
  FS:  00007f9f8173c700(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000714dc0 CR3: 0000000066fa6000 CR4: 00000000000006f0
  Call Trace:
   ? trace_array_printk_buf+0x140/0x140
   ? __mutex_lock_slowpath+0x10/0x10
   tracing_snapshot_write+0x4c8/0x7f0
   ? trace_printk_init_buffers+0x60/0x60
   ? selinux_file_permission+0x3b/0x540
   ? tracer_preempt_off+0x38/0x506
   ? trace_printk_init_buffers+0x60/0x60
   __vfs_write+0x81/0x100
   vfs_write+0x1e1/0x560
   ksys_write+0x126/0x250
   ? __ia32_sys_read+0xb0/0xb0
   ? do_syscall_64+0x1f/0x390
   do_syscall_64+0xc1/0x390
   entry_SYSCALL_64_after_hwframe+0x49/0xbe

This patch adds resize_buffer_duplicate_size() to check if there is a
difference between current/spare buffer sizes and resize a spare buffer
if necessary.

Link: http://lkml.kernel.org/r/20190625012910.13109-1-devel@etsukata.com

Cc: stable@vger.kernel.org
Fixes: ad909e2 ("tracing: Add internal tracing_snapshot() functions")
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
zhenyw pushed a commit that referenced this issue Aug 9, 2019
Make debug exceptions visible from RCU so that synchronize_rcu()
correctly track the debug exception handler.

This also introduces sanity checks for user-mode exceptions as same
as x86's ist_enter()/ist_exit().

The debug exception can interrupt in idle task. For example, it warns
if we put a kprobe on a function called from idle task as below.
The warning message showed that the rcu_read_lock() caused this
problem. But actually, this means the RCU is lost the context which
is already in NMI/IRQ.

  /sys/kernel/debug/tracing # echo p default_idle_call >> kprobe_events
  /sys/kernel/debug/tracing # echo 1 > events/kprobes/enable
  /sys/kernel/debug/tracing # [  135.122237]
  [  135.125035] =============================
  [  135.125310] WARNING: suspicious RCU usage
  [  135.125581] 5.2.0-08445-g9187c508bdc7 #20 Not tainted
  [  135.125904] -----------------------------
  [  135.126205] include/linux/rcupdate.h:594 rcu_read_lock() used illegally while idle!
  [  135.126839]
  [  135.126839] other info that might help us debug this:
  [  135.126839]
  [  135.127410]
  [  135.127410] RCU used illegally from idle CPU!
  [  135.127410] rcu_scheduler_active = 2, debug_locks = 1
  [  135.128114] RCU used illegally from extended quiescent state!
  [  135.128555] 1 lock held by swapper/0/0:
  [  135.128944]  #0: (____ptrval____) (rcu_read_lock){....}, at: call_break_hook+0x0/0x178
  [  135.130499]
  [  135.130499] stack backtrace:
  [  135.131192] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.2.0-08445-g9187c508bdc7 #20
  [  135.131841] Hardware name: linux,dummy-virt (DT)
  [  135.132224] Call trace:
  [  135.132491]  dump_backtrace+0x0/0x140
  [  135.132806]  show_stack+0x24/0x30
  [  135.133133]  dump_stack+0xc4/0x10c
  [  135.133726]  lockdep_rcu_suspicious+0xf8/0x108
  [  135.134171]  call_break_hook+0x170/0x178
  [  135.134486]  brk_handler+0x28/0x68
  [  135.134792]  do_debug_exception+0x90/0x150
  [  135.135051]  el1_dbg+0x18/0x8c
  [  135.135260]  default_idle_call+0x0/0x44
  [  135.135516]  cpu_startup_entry+0x2c/0x30
  [  135.135815]  rest_init+0x1b0/0x280
  [  135.136044]  arch_call_rest_init+0x14/0x1c
  [  135.136305]  start_kernel+0x4d4/0x500
  [  135.136597]

So make debug exception visible to RCU can fix this warning.

Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
zhenyw pushed a commit that referenced this issue Aug 12, 2019
A deadlock with this stacktrace was observed.

The loop thread does a GFP_KERNEL allocation, it calls into dm-bufio
shrinker and the shrinker depends on I/O completion in the dm-bufio
subsystem.

In order to fix the deadlock (and other similar ones), we set the flag
PF_MEMALLOC_NOIO at loop thread entry.

PID: 474    TASK: ffff8813e11f4600  CPU: 10  COMMAND: "kswapd0"
   #0 [ffff8813dedfb938] __schedule at ffffffff8173f405
   #1 [ffff8813dedfb990] schedule at ffffffff8173fa27
   #2 [ffff8813dedfb9b0] schedule_timeout at ffffffff81742fec
   #3 [ffff8813dedfba60] io_schedule_timeout at ffffffff8173f186
   #4 [ffff8813dedfbaa0] bit_wait_io at ffffffff8174034f
   #5 [ffff8813dedfbac0] __wait_on_bit at ffffffff8173fec8
   #6 [ffff8813dedfbb10] out_of_line_wait_on_bit at ffffffff8173ff81
   #7 [ffff8813dedfbb90] __make_buffer_clean at ffffffffa038736f [dm_bufio]
   #8 [ffff8813dedfbbb0] __try_evict_buffer at ffffffffa0387bb8 [dm_bufio]
   #9 [ffff8813dedfbbd0] dm_bufio_shrink_scan at ffffffffa0387cc3 [dm_bufio]
  #10 [ffff8813dedfbc40] shrink_slab at ffffffff811a87ce
  #11 [ffff8813dedfbd30] shrink_zone at ffffffff811ad778
  #12 [ffff8813dedfbdc0] kswapd at ffffffff811ae92f
  #13 [ffff8813dedfbec0] kthread at ffffffff810a8428
  #14 [ffff8813dedfbf50] ret_from_fork at ffffffff81745242

  PID: 14127  TASK: ffff881455749c00  CPU: 11  COMMAND: "loop1"
   #0 [ffff88272f5af228] __schedule at ffffffff8173f405
   #1 [ffff88272f5af280] schedule at ffffffff8173fa27
   #2 [ffff88272f5af2a0] schedule_preempt_disabled at ffffffff8173fd5e
   #3 [ffff88272f5af2b0] __mutex_lock_slowpath at ffffffff81741fb5
   #4 [ffff88272f5af330] mutex_lock at ffffffff81742133
   #5 [ffff88272f5af350] dm_bufio_shrink_count at ffffffffa03865f9 [dm_bufio]
   #6 [ffff88272f5af380] shrink_slab at ffffffff811a86bd
   #7 [ffff88272f5af470] shrink_zone at ffffffff811ad778
   #8 [ffff88272f5af500] do_try_to_free_pages at ffffffff811adb34
   #9 [ffff88272f5af590] try_to_free_pages at ffffffff811adef8
  #10 [ffff88272f5af610] __alloc_pages_nodemask at ffffffff811a09c3
  #11 [ffff88272f5af710] alloc_pages_current at ffffffff811e8b71
  #12 [ffff88272f5af760] new_slab at ffffffff811f4523
  #13 [ffff88272f5af7b0] __slab_alloc at ffffffff8173a1b5
  #14 [ffff88272f5af880] kmem_cache_alloc at ffffffff811f484b
  #15 [ffff88272f5af8d0] do_blockdev_direct_IO at ffffffff812535b3
  #16 [ffff88272f5afb00] __blockdev_direct_IO at ffffffff81255dc3
  #17 [ffff88272f5afb30] xfs_vm_direct_IO at ffffffffa01fe3fc [xfs]
  #18 [ffff88272f5afb90] generic_file_read_iter at ffffffff81198994
  #19 [ffff88272f5afc50] __dta_xfs_file_read_iter_2398 at ffffffffa020c970 [xfs]
  #20 [ffff88272f5afcc0] lo_rw_aio at ffffffffa0377042 [loop]
  #21 [ffff88272f5afd70] loop_queue_work at ffffffffa0377c3b [loop]
  #22 [ffff88272f5afe60] kthread_worker_fn at ffffffff810a8a0c
  #23 [ffff88272f5afec0] kthread at ffffffff810a8428
  #24 [ffff88272f5aff50] ret_from_fork at ffffffff81745242

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
@jembhz
Copy link

jembhz commented Aug 12, 2019

Ey, how did you achieve that, I'm struggling with Proxmox (Based on QEMU/KVM) to get that done, to put the iGPU as headless, I have a RX580 as well and everything is working so far on MacOS Mojave but iGPU passthrouhg as headless, when I try it MacOS reboots forever, if you can give me some advice I will really appreciate!

@oscarbg
Copy link

oscarbg commented Aug 13, 2019

@joyqing just noticed the "gpustat" MacOS command line tool you use which seems to report GPU clocks, utlization,etc.. I can't find anywhere.. it's custom made? can share source code or which Mac APIs you use to query such information from your apps? thanks..

@mateHD
Copy link

mateHD commented Nov 26, 2019

I have macOS High Sierra as well (real mac, actually on ubuntu 16.04.3) it is a macbookair with hd 6000 (bdw) graphics. Since the dma-buf doesn't seem to work (for me, it just says cursor plane not initialized by guest) I have -serial stdio with tianocore uefi, which allows me to navigate clover bootloader via the serial port! Then I just wait a long time until macos boots, and I get this: (via port forwarding 5900 to 5800 for screen sharing host-side) screenshot from 2018-02-18 11-11-33 since the dma-buf doesn't work, I just use macos screen sharing. As you can see, the bdw kexts are loaded, but, just like a real headless mac, unless there is an edid detected on a port, qe/ci still gets disabled. We are really close here, all that needs to happen is: a) get the dma-buf to work with tianocore uefi, or b) we get clover to fake a display. b) is actually possible, we can inject an edid (meant for laptops with monitor issues) which will trick appleintelbdwgraphics into enabling acceleration, and we screen-share in until dma-buf works wiith uefi. Note: this is all on real macbookair7,2...

Hi,
Do you have any news about this project? Any success?
Thanks

@trevor403
Copy link

trevor403 commented Mar 5, 2020

This issue is linked in Arch Wiki, the have some options for using OVMF UEFI to work for guests. This would enable Clover to use the OpRom for gvt https://wiki.archlinux.org/index.php/Intel_GVT-g#Using_DMA-BUF_with_UEFI/OVMF

Note that DMA-BUF will never work on macOS unless a (fairly complex) kext patch were to be developed. Less likely would be official GVT DMA-BUF support distributed by Apple. However I would love to see EDID faking to gain headless HW acceleration.

I hope Clover can help make this possible!

zhenyw pushed a commit that referenced this issue Apr 8, 2020
When experimenting with bpf_send_signal() helper in our production
environment (5.2 based), we experienced a deadlock in NMI mode:
   #5 [ffffc9002219f770] queued_spin_lock_slowpath at ffffffff8110be24
   #6 [ffffc9002219f770] _raw_spin_lock_irqsave at ffffffff81a43012
   #7 [ffffc9002219f780] try_to_wake_up at ffffffff810e7ecd
   #8 [ffffc9002219f7e0] signal_wake_up_state at ffffffff810c7b55
   #9 [ffffc9002219f7f0] __send_signal at ffffffff810c8602
  #10 [ffffc9002219f830] do_send_sig_info at ffffffff810ca31a
  #11 [ffffc9002219f868] bpf_send_signal at ffffffff8119d227
  #12 [ffffc9002219f988] bpf_overflow_handler at ffffffff811d4140
  #13 [ffffc9002219f9e0] __perf_event_overflow at ffffffff811d68cf
  #14 [ffffc9002219fa10] perf_swevent_overflow at ffffffff811d6a09
  #15 [ffffc9002219fa38] ___perf_sw_event at ffffffff811e0f47
  #16 [ffffc9002219fc30] __schedule at ffffffff81a3e04d
  #17 [ffffc9002219fc90] schedule at ffffffff81a3e219
  #18 [ffffc9002219fca0] futex_wait_queue_me at ffffffff8113d1b9
  #19 [ffffc9002219fcd8] futex_wait at ffffffff8113e529
  #20 [ffffc9002219fdf0] do_futex at ffffffff8113ffbc
  #21 [ffffc9002219fec0] __x64_sys_futex at ffffffff81140d1c
  #22 [ffffc9002219ff38] do_syscall_64 at ffffffff81002602
  #23 [ffffc9002219ff50] entry_SYSCALL_64_after_hwframe at ffffffff81c00068

The above call stack is actually very similar to an issue
reported by Commit eac9153 ("bpf/stackmap: Fix deadlock with
rq_lock in bpf_get_stack()") by Song Liu. The only difference is
bpf_send_signal() helper instead of bpf_get_stack() helper.

The above deadlock is triggered with a perf_sw_event.
Similar to Commit eac9153, the below almost identical reproducer
used tracepoint point sched/sched_switch so the issue can be easily caught.
  /* stress_test.c */
  #include <stdio.h>
  #include <stdlib.h>
  #include <sys/mman.h>
  #include <pthread.h>
  #include <sys/types.h>
  #include <sys/stat.h>
  #include <fcntl.h>

  #define THREAD_COUNT 1000
  char *filename;
  void *worker(void *p)
  {
        void *ptr;
        int fd;
        char *pptr;

        fd = open(filename, O_RDONLY);
        if (fd < 0)
                return NULL;
        while (1) {
                struct timespec ts = {0, 1000 + rand() % 2000};

                ptr = mmap(NULL, 4096 * 64, PROT_READ, MAP_PRIVATE, fd, 0);
                usleep(1);
                if (ptr == MAP_FAILED) {
                        printf("failed to mmap\n");
                        break;
                }
                munmap(ptr, 4096 * 64);
                usleep(1);
                pptr = malloc(1);
                usleep(1);
                pptr[0] = 1;
                usleep(1);
                free(pptr);
                usleep(1);
                nanosleep(&ts, NULL);
        }
        close(fd);
        return NULL;
  }

  int main(int argc, char *argv[])
  {
        void *ptr;
        int i;
        pthread_t threads[THREAD_COUNT];

        if (argc < 2)
                return 0;

        filename = argv[1];

        for (i = 0; i < THREAD_COUNT; i++) {
                if (pthread_create(threads + i, NULL, worker, NULL)) {
                        fprintf(stderr, "Error creating thread\n");
                        return 0;
                }
        }

        for (i = 0; i < THREAD_COUNT; i++)
                pthread_join(threads[i], NULL);
        return 0;
  }
and the following command:
  1. run `stress_test /bin/ls` in one windown
  2. hack bcc trace.py with the following change:
     --- a/tools/trace.py
     +++ b/tools/trace.py
     @@ -513,6 +513,7 @@ BPF_PERF_OUTPUT(%s);
              __data.tgid = __tgid;
              __data.pid = __pid;
              bpf_get_current_comm(&__data.comm, sizeof(__data.comm));
     +        bpf_send_signal(10);
      %s
      %s
              %s.perf_submit(%s, &__data, sizeof(__data));
  3. in a different window run
     ./trace.py -p $(pidof stress_test) t:sched:sched_switch

The deadlock can be reproduced in our production system.

Similar to Song's fix, the fix is to delay sending signal if
irqs is disabled to avoid deadlocks involving with rq_lock.
With this change, my above stress-test in our production system
won't cause deadlock any more.

I also implemented a scale-down version of reproducer in the
selftest (a subsequent commit). With latest bpf-next,
it complains for the following potential deadlock.
  [   32.832450] -> #1 (&p->pi_lock){-.-.}:
  [   32.833100]        _raw_spin_lock_irqsave+0x44/0x80
  [   32.833696]        task_rq_lock+0x2c/0xa0
  [   32.834182]        task_sched_runtime+0x59/0xd0
  [   32.834721]        thread_group_cputime+0x250/0x270
  [   32.835304]        thread_group_cputime_adjusted+0x2e/0x70
  [   32.835959]        do_task_stat+0x8a7/0xb80
  [   32.836461]        proc_single_show+0x51/0xb0
  ...
  [   32.839512] -> #0 (&(&sighand->siglock)->rlock){....}:
  [   32.840275]        __lock_acquire+0x1358/0x1a20
  [   32.840826]        lock_acquire+0xc7/0x1d0
  [   32.841309]        _raw_spin_lock_irqsave+0x44/0x80
  [   32.841916]        __lock_task_sighand+0x79/0x160
  [   32.842465]        do_send_sig_info+0x35/0x90
  [   32.842977]        bpf_send_signal+0xa/0x10
  [   32.843464]        bpf_prog_bc13ed9e4d3163e3_send_signal_tp_sched+0x465/0x1000
  [   32.844301]        trace_call_bpf+0x115/0x270
  [   32.844809]        perf_trace_run_bpf_submit+0x4a/0xc0
  [   32.845411]        perf_trace_sched_switch+0x10f/0x180
  [   32.846014]        __schedule+0x45d/0x880
  [   32.846483]        schedule+0x5f/0xd0
  ...

  [   32.853148] Chain exists of:
  [   32.853148]   &(&sighand->siglock)->rlock --> &p->pi_lock --> &rq->lock
  [   32.853148]
  [   32.854451]  Possible unsafe locking scenario:
  [   32.854451]
  [   32.855173]        CPU0                    CPU1
  [   32.855745]        ----                    ----
  [   32.856278]   lock(&rq->lock);
  [   32.856671]                                lock(&p->pi_lock);
  [   32.857332]                                lock(&rq->lock);
  [   32.857999]   lock(&(&sighand->siglock)->rlock);

  Deadlock happens on CPU0 when it tries to acquire &sighand->siglock
  but it has been held by CPU1 and CPU1 tries to grab &rq->lock
  and cannot get it.

  This is not exactly the callstack in our production environment,
  but sympotom is similar and both locks are using spin_lock_irqsave()
  to acquire the lock, and both involves rq_lock. The fix to delay
  sending signal when irq is disabled also fixed this issue.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200304191104.2796501-1-yhs@fb.com
@danwdart
Copy link

Is this mainlined in 4.2 or 5.0?

zhenyw pushed a commit that referenced this issue Sep 8, 2020
I compiled with AddressSanitizer and I had these memory leaks while I
was using the tep_parse_format function:

    Direct leak of 28 byte(s) in 4 object(s) allocated from:
        #0 0x7fb07db49ffe in __interceptor_realloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10dffe)
        #1 0x7fb07a724228 in extend_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:985
        #2 0x7fb07a724c21 in __read_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1140
        #3 0x7fb07a724f78 in read_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1206
        #4 0x7fb07a725191 in __read_expect_type /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1291
        #5 0x7fb07a7251df in read_expect_type /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1299
        #6 0x7fb07a72e6c8 in process_dynamic_array_len /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:2849
        #7 0x7fb07a7304b8 in process_function /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3161
        #8 0x7fb07a730900 in process_arg_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3207
        #9 0x7fb07a727c0b in process_arg /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1786
        #10 0x7fb07a731080 in event_read_print_args /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3285
        #11 0x7fb07a731722 in event_read_print /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3369
        #12 0x7fb07a740054 in __tep_parse_format /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6335
        #13 0x7fb07a74047a in __parse_event /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6389
        #14 0x7fb07a740536 in tep_parse_format /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6431
        #15 0x7fb07a785acf in parse_event ../../../src/fs-src/fs.c:251
        #16 0x7fb07a785ccd in parse_systems ../../../src/fs-src/fs.c:284
        #17 0x7fb07a786fb3 in read_metadata ../../../src/fs-src/fs.c:593
        #18 0x7fb07a78760e in ftrace_fs_source_init ../../../src/fs-src/fs.c:727
        #19 0x7fb07d90c19c in add_component_with_init_method_data ../../../../src/lib/graph/graph.c:1048
        #20 0x7fb07d90c87b in add_source_component_with_initialize_method_data ../../../../src/lib/graph/graph.c:1127
        #21 0x7fb07d90c92a in bt_graph_add_source_component ../../../../src/lib/graph/graph.c:1152
        #22 0x55db11aa632e in cmd_run_ctx_create_components_from_config_components ../../../src/cli/babeltrace2.c:2252
        #23 0x55db11aa6fda in cmd_run_ctx_create_components ../../../src/cli/babeltrace2.c:2347
        #24 0x55db11aa780c in cmd_run ../../../src/cli/babeltrace2.c:2461
        #25 0x55db11aa8a7d in main ../../../src/cli/babeltrace2.c:2673
        #26 0x7fb07d5460b2 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x270b2)

The token variable in the process_dynamic_array_len function is
allocated in the read_expect_type function, but is not freed before
calling the read_token function.

Free the token variable before calling read_token in order to plug the
leak.

Signed-off-by: Philippe Duplessis-Guindon <pduplessis@efficios.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lore.kernel.org/linux-trace-devel/20200730150236.5392-1-pduplessis@efficios.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
zhenyw pushed a commit that referenced this issue Sep 25, 2020
The test_generic_metric() missed to release entries in the pctx.  Asan
reported following leak (and more):

  Direct leak of 128 byte(s) in 1 object(s) allocated from:
    #0 0x7f4c9396980e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e)
    #1 0x55f7e748cc14 in hashmap_grow (/home/namhyung/project/linux/tools/perf/perf+0x90cc14)
    #2 0x55f7e748d497 in hashmap__insert (/home/namhyung/project/linux/tools/perf/perf+0x90d497)
    #3 0x55f7e7341667 in hashmap__set /home/namhyung/project/linux/tools/perf/util/hashmap.h:111
    #4 0x55f7e7341667 in expr__add_ref util/expr.c:120
    #5 0x55f7e7292436 in prepare_metric util/stat-shadow.c:783
    #6 0x55f7e729556d in test_generic_metric util/stat-shadow.c:858
    #7 0x55f7e712390b in compute_single tests/parse-metric.c:128
    #8 0x55f7e712390b in __compute_metric tests/parse-metric.c:180
    #9 0x55f7e712446d in compute_metric tests/parse-metric.c:196
    #10 0x55f7e712446d in test_dcache_l2 tests/parse-metric.c:295
    #11 0x55f7e712446d in test__parse_metric tests/parse-metric.c:355
    #12 0x55f7e70be09b in run_test tests/builtin-test.c:410
    #13 0x55f7e70be09b in test_and_print tests/builtin-test.c:440
    #14 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661
    #15 0x55f7e70c101a in cmd_test tests/builtin-test.c:807
    #16 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312
    #17 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364
    #18 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408
    #19 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538
    #20 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308

Fixes: 6d432c4 ("perf tools: Add test_generic_metric function")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20200915031819.386559-8-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
zhenyw pushed a commit that referenced this issue Nov 26, 2020
This fix is for a failure that occurred in the DWARF unwind perf test.

Stack unwinders may probe memory when looking for frames.

Memory sanitizer will poison and track uninitialized memory on the
stack, and on the heap if the value is copied to the heap.

This can lead to false memory sanitizer failures for the use of an
uninitialized value.

Avoid this problem by removing the poison on the copied stack.

The full msan failure with track origins looks like:

==2168==WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x559ceb10755b in handle_cfi elfutils/libdwfl/frame_unwind.c:648:8
    #1 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #2 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #3 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #4 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #5 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #6 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #7 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #8 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #9 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #10 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #11 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #12 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #13 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #14 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #15 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #16 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #17 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    #18 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    #19 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    #20 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    #21 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    #22 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    #23 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559ceb106acf in __libdwfl_frame_reg_set elfutils/libdwfl/frame_unwind.c:77:22
    #1 0x559ceb106acf in handle_cfi elfutils/libdwfl/frame_unwind.c:627:13
    #2 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #3 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #4 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #5 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #6 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #7 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #8 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #9 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #10 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #11 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #12 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #13 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #14 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #15 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #16 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #17 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #18 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    #19 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    #20 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    #21 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    #22 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    #23 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    #24 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559ceb106a54 in handle_cfi elfutils/libdwfl/frame_unwind.c:613:9
    #1 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #2 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #3 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #4 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #5 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #6 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #7 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #8 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #9 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #10 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #11 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #12 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #13 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #14 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #15 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #16 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #17 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    #18 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    #19 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    #20 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    #21 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    #22 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    #23 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559ceaff8800 in memory_read tools/perf/util/unwind-libdw.c:156:10
    #1 0x559ceb10f053 in expr_eval elfutils/libdwfl/frame_unwind.c:501:13
    #2 0x559ceb1060cc in handle_cfi elfutils/libdwfl/frame_unwind.c:603:18
    #3 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #4 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #5 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #6 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #7 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #8 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #9 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #10 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #11 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #12 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #13 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #14 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #15 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #16 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #17 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #18 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #19 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    #20 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    #21 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    #22 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    #23 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    #24 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    #25 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559cea9027d9 in __msan_memcpy llvm/llvm-project/compiler-rt/lib/msan/msan_interceptors.cpp:1558:3
    #1 0x559cea9d2185 in sample_ustack tools/perf/arch/x86/tests/dwarf-unwind.c:41:2
    #2 0x559cea9d202c in test__arch_unwind_sample tools/perf/arch/x86/tests/dwarf-unwind.c:72:9
    #3 0x559ceabc9cbd in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:106:6
    #4 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #5 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #6 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #7 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #8 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #9 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #10 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #11 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    #12 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    #13 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    #14 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    #15 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    #16 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    #17 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was created by an allocation of 'bf' in the stack frame of function 'perf_event__synthesize_mmap_events'
    #0 0x559ceafc5f60 in perf_event__synthesize_mmap_events tools/perf/util/synthetic-events.c:445

SUMMARY: MemorySanitizer: use-of-uninitialized-value elfutils/libdwfl/frame_unwind.c:648:8 in handle_cfi
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: clang-built-linux@googlegroups.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sandeep Dasgupta <sdasgup@google.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20201113182053.754625-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
zhenyw pushed a commit that referenced this issue Mar 16, 2021
Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:

 * ae5e070 ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")

 * 6f23277 ("btrfs: qgroup: don't commit transaction when we already
 hold the handle")

Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:

  PID: 6963   TASK: ffff8c7f3f94c000  CPU: 2   COMMAND: "test"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_timeout at ffffffffa52a1bdd
  #3  wait_for_completion at ffffffffa529eeea             <-- sleeps with delayed node mutex held
  #4  start_delalloc_inodes at ffffffffc0380db5
  #5  btrfs_start_delalloc_snapshot at ffffffffc0393836
  #6  try_flush_qgroup at ffffffffc03f04b2
  #7  __btrfs_qgroup_reserve_meta at ffffffffc03f5bb6     <-- tries to reserve space and starts delalloc inodes.
  #8  btrfs_delayed_update_inode at ffffffffc03e31aa      <-- acquires delayed node mutex
  #9  btrfs_update_inode at ffffffffc0385ba8
 #10  btrfs_dirty_inode at ffffffffc038627b               <-- TRANSACTIION OPENED
 #11  touch_atime at ffffffffa4cf0000
 #12  generic_file_read_iter at ffffffffa4c1f123
 #13  new_sync_read at ffffffffa4ccdc8a
 #14  vfs_read at ffffffffa4cd0849
 #15  ksys_read at ffffffffa4cd0bd1
 #16  do_syscall_64 at ffffffffa4a052eb
 #17  entry_SYSCALL_64_after_hwframe at ffffffffa540008c

This will cause an asynchronous work to flush the delalloc inodes to
happen which can try to acquire the same delayed_node mutex:

  PID: 455    TASK: ffff8c8085fa4000  CPU: 5   COMMAND: "kworker/u16:30"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_preempt_disabled at ffffffffa529e80a
  #3  __mutex_lock at ffffffffa529fdcb                    <-- goes to sleep, never wakes up.
  #4  btrfs_delayed_update_inode at ffffffffc03e3143      <-- tries to acquire the mutex
  #5  btrfs_update_inode at ffffffffc0385ba8              <-- this is the same inode that pid 6963 is holding
  #6  cow_file_range_inline.constprop.78 at ffffffffc0386be7
  #7  cow_file_range at ffffffffc03879c1
  #8  btrfs_run_delalloc_range at ffffffffc038894c
  #9  writepage_delalloc at ffffffffc03a3c8f
 #10  __extent_writepage at ffffffffc03a4c01
 #11  extent_write_cache_pages at ffffffffc03a500b
 #12  extent_writepages at ffffffffc03a6de2
 #13  do_writepages at ffffffffa4c277eb
 #14  __filemap_fdatawrite_range at ffffffffa4c1e5bb
 #15  btrfs_run_delalloc_work at ffffffffc0380987         <-- starts running delayed nodes
 #16  normal_work_helper at ffffffffc03b706c
 #17  process_one_work at ffffffffa4aba4e4
 #18  worker_thread at ffffffffa4aba6fd
 #19  kthread at ffffffffa4ac0a3d
 #20  ret_from_fork at ffffffffa54001ff

To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.

Fixes: c53e965 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
zhenyw pushed a commit that referenced this issue Mar 16, 2021
The evlist and the cpu/thread maps should be released together.
Otherwise following error was reported by Asan.

Note that this test still has memory leaks in DSOs so it still fails
even after this change.  I'll take a look at that too.

  # perf test -v 26
  26: Object code reading                        :
  --- start ---
  test child forked, pid 154184
  Looking at the vmlinux_path (8 entries long)
  symsrc__init: build id mismatch for vmlinux.
  symsrc__init: cannot get elf header.
  Using /proc/kcore for kernel data
  Using /proc/kallsyms for symbols
  Parsing event 'cycles'
  mmap size 528384B
  ...
  =================================================================
  ==154184==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 439 byte(s) in 1 object(s) allocated from:
    #0 0x7fcb66e77037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154
    #1 0x55ad9b7e821e in dso__new_id util/dso.c:1256
    #2 0x55ad9b8cfd4a in __machine__addnew_vdso util/vdso.c:132
    #3 0x55ad9b8cfd4a in machine__findnew_vdso util/vdso.c:347
    #4 0x55ad9b845b7e in map__new util/map.c:176
    #5 0x55ad9b8415a2 in machine__process_mmap2_event util/machine.c:1787
    #6 0x55ad9b8fab16 in perf_tool__process_synth_event util/synthetic-events.c:64
    #7 0x55ad9b8fab16 in perf_event__synthesize_mmap_events util/synthetic-events.c:499
    #8 0x55ad9b8fbfdf in __event__synthesize_thread util/synthetic-events.c:741
    #9 0x55ad9b8ff3e3 in perf_event__synthesize_thread_map util/synthetic-events.c:833
    #10 0x55ad9b738585 in do_test_code_reading tests/code-reading.c:608
    #11 0x55ad9b73b25d in test__code_reading tests/code-reading.c:722
    #12 0x55ad9b6f28fb in run_test tests/builtin-test.c:428
    #13 0x55ad9b6f28fb in test_and_print tests/builtin-test.c:458
    #14 0x55ad9b6f4a53 in __cmd_test tests/builtin-test.c:679
    #15 0x55ad9b6f4a53 in cmd_test tests/builtin-test.c:825
    #16 0x55ad9b760cc4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #17 0x55ad9b5eaa88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #18 0x55ad9b5eaa88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #19 0x55ad9b5eaa88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #20 0x7fcb669acd09 in __libc_start_main ../csu/libc-start.c:308

    ...
  SUMMARY: AddressSanitizer: 471 byte(s) leaked in 2 allocation(s).
  test child finished with 1
  ---- end ----
  Object code reading: FAILED!

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: https://lore.kernel.org/r/20210301140409.184570-6-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
zhenyw pushed a commit that referenced this issue Apr 12, 2021
I got several memory leak reports from Asan with a simple command.  It
was because VDSO is not released due to the refcount.  Like in
__dsos_addnew_id(), it should put the refcount after adding to the list.

  $ perf record true
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.030 MB perf.data (10 samples) ]

  =================================================================
  ==692599==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 439 byte(s) in 1 object(s) allocated from:
    #0 0x7fea52341037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154
    #1 0x559bce4aa8ee in dso__new_id util/dso.c:1256
    #2 0x559bce59245a in __machine__addnew_vdso util/vdso.c:132
    #3 0x559bce59245a in machine__findnew_vdso util/vdso.c:347
    #4 0x559bce50826c in map__new util/map.c:175
    #5 0x559bce503c92 in machine__process_mmap2_event util/machine.c:1787
    #6 0x559bce512f6b in machines__deliver_event util/session.c:1481
    #7 0x559bce515107 in perf_session__deliver_event util/session.c:1551
    #8 0x559bce51d4d2 in do_flush util/ordered-events.c:244
    #9 0x559bce51d4d2 in __ordered_events__flush util/ordered-events.c:323
    #10 0x559bce519bea in __perf_session__process_events util/session.c:2268
    #11 0x559bce519bea in perf_session__process_events util/session.c:2297
    #12 0x559bce2e7a52 in process_buildids /home/namhyung/project/linux/tools/perf/builtin-record.c:1017
    #13 0x559bce2e7a52 in record__finish_output /home/namhyung/project/linux/tools/perf/builtin-record.c:1234
    #14 0x559bce2ed4f6 in __cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2026
    #15 0x559bce2ed4f6 in cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2858
    #16 0x559bce422db4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #17 0x559bce2acac8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #18 0x559bce2acac8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #19 0x559bce2acac8 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #20 0x7fea51e76d09 in __libc_start_main ../csu/libc-start.c:308

  Indirect leak of 32 byte(s) in 1 object(s) allocated from:
    #0 0x7fea52341037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154
    #1 0x559bce520907 in nsinfo__copy util/namespaces.c:169
    #2 0x559bce50821b in map__new util/map.c:168
    #3 0x559bce503c92 in machine__process_mmap2_event util/machine.c:1787
    #4 0x559bce512f6b in machines__deliver_event util/session.c:1481
    #5 0x559bce515107 in perf_session__deliver_event util/session.c:1551
    #6 0x559bce51d4d2 in do_flush util/ordered-events.c:244
    #7 0x559bce51d4d2 in __ordered_events__flush util/ordered-events.c:323
    #8 0x559bce519bea in __perf_session__process_events util/session.c:2268
    #9 0x559bce519bea in perf_session__process_events util/session.c:2297
    #10 0x559bce2e7a52 in process_buildids /home/namhyung/project/linux/tools/perf/builtin-record.c:1017
    #11 0x559bce2e7a52 in record__finish_output /home/namhyung/project/linux/tools/perf/builtin-record.c:1234
    #12 0x559bce2ed4f6 in __cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2026
    #13 0x559bce2ed4f6 in cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2858
    #14 0x559bce422db4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #15 0x559bce2acac8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #16 0x559bce2acac8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #17 0x559bce2acac8 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #18 0x7fea51e76d09 in __libc_start_main ../csu/libc-start.c:308

  SUMMARY: AddressSanitizer: 471 byte(s) leaked in 2 allocation(s).

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20210315045641.700430-1-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
@scorpion81
Copy link

scorpion81 commented Jan 9, 2022

Hi everyone,

With the help of a locally modified version of https://github.com/patmagauran/i915ovmfPkg i had partial success with GVT-g and macOS in qemu. The VM boots up and you can see the Guest IGPU displayed in MacOS BUT... if you attempt to load the (in my case) KabyLake or CoffeeLake apple drivers, booting takes very long and there are a few error messages in qemu, the host linux's dmesg (Manjaro with kernel 5.10.89) and the boot gets stuck when trying to access the frame buffer.

See here for more details and the mentioned error messages:

acidanthera/bugtracker#1914 (comment)

The relevant bits here are (dmesg):

[ 2466.228805] i915 0000:00:02.0: drm_WARN_ON(bytes > 2)
[ 2466.228844] WARNING: CPU: 4 PID: 22460 at drivers/gpu/drm/i915/gvt/cfg_space.c:325 intel_vgpu_emulate_cfg_write+0x3a3/0x4c0 [i915] 

--snip, see the link above for the stacktrace of that warning--

[ 2466.288841] gvt: vgpu(1) Invalid FORCE_NONPRIV write 7034 at offset 24d8
[ 2466.288846] gvt: vgpu(1) Invalid FORCE_NONPRIV write 7008 at offset 24dc
[ 2466.288856] gvt: vgpu 1: write invalid HWSP address, reg:0x2080, value:0x402a4000
[ 2466.288857] gvt: vgpu 1: fail to emulate MMIO write 00002080 len 4
[ 2466.288879] gvt: vgpu 1: write invalid HWSP address, reg:0x12080, value:0x402a5000
[ 2466.288879] gvt: vgpu 1: fail to emulate MMIO write 00012080 len 4
[ 2466.288909] gvt: vgpu 1: write invalid HWSP address, reg:0x22080, value:0x402a6000
[ 2466.288909] gvt: vgpu 1: fail to emulate MMIO write 00022080 len 4
[ 2466.288918] gvt: vgpu 1: write invalid HWSP address, reg:0x1a080, value:0x402a7000
[ 2466.288918] gvt: vgpu 1: fail to emulate MMIO write 0001a080 len 4
[ 2466.292585] gvt: vgpu 1: invalid mm type: 0 gma 402aa000
[ 2466.292586] gvt: vgpu 1: invalid guest context LRCA: 402a9
[ 2466.292587] gvt: vgpu 1: failed to submit desc 0
[ 2466.292588] gvt: vgpu 1: fail submit workload on ring rcs0
[ 2466.292588] gvt: vgpu 1: fail to emulate MMIO write 00002230 len 4

and qemu:

qemu-system-x86_64: vfio_pci_write_config(9085644c-8cf8-4df0-900e-0c1362deddea, 0x4, 0x100407, 0x4) failed: Ung?ltige Adresse
qemu-system-x86_64: vfio_pci_write_config(9085644c-8cf8-4df0-900e-0c1362deddea, 0x4, 0x100407, 0x4) failed: Ung?ltige Adresse
qemu-system-x86_64: vfio_region_write(9085644c-8cf8-4df0-900e-0c1362deddea:region0+0x2080, 0x402a4000,4) failed: Ung?ltige Adresse
qemu-system-x86_64: vfio_region_write(9085644c-8cf8-4df0-900e-0c1362deddea:region0+0x12080, 0x402a5000,4) failed: Ung?ltige Adresse
qemu-system-x86_64: vfio_region_write(9085644c-8cf8-4df0-900e-0c1362deddea:region0+0x22080, 0x402a6000,4) failed: Ung?ltige Adresse
qemu-system-x86_64: vfio_region_write(9085644c-8cf8-4df0-900e-0c1362deddea:region0+0x1a080, 0x402a7000,4) failed: Ung?ltige Adresse
qemu-system-x86_64: vfio_region_write(9085644c-8cf8-4df0-900e-0c1362deddea:region0+0x2230, 0x402a9119,4) failed: Ung?ltige Adresse 

the MMIO(24d8) and MMIO(24dc) are not "whitelisted" and there seem to be issues with the gtt/aperture size (some address range is being validated, but seems to fail), but i didnt have luck to solve it and not enough understanding of the nuts and bolts
of the Intel driver terminology.... all those crazy shortcuts... 🙁

So, what relevant bits are missing here in gvt which seem not to be passed further to the "Host" i915 ?

zhiwang1 pushed a commit that referenced this issue Feb 17, 2022
arm32 uses software to simulate the instruction replaced
by kprobe. some instructions may be simulated by constructing
assembly functions. therefore, before executing instruction
simulation, it is necessary to construct assembly function
execution environment in C language through binding registers.
after kasan is enabled, the register binding relationship will
be destroyed, resulting in instruction simulation errors and
causing kernel panic.

the kprobe emulate instruction function is distributed in three
files: actions-common.c actions-arm.c actions-thumb.c, so disable
KASAN when compiling these files.

for example, use kprobe insert on cap_capable+20 after kasan
enabled, the cap_capable assembly code is as follows:
<cap_capable>:
e92d47f0	push	{r4, r5, r6, r7, r8, r9, sl, lr}
e1a05000	mov	r5, r0
e280006c	add	r0, r0, #108    ; 0x6c
e1a04001	mov	r4, r1
e1a06002	mov	r6, r2
e59fa090	ldr	sl, [pc, #144]  ;
ebfc7bf8	bl	c03aa4b4 <__asan_load4>
e595706c	ldr	r7, [r5, #108]  ; 0x6c
e2859014	add	r9, r5, #20
......
The emulate_ldr assembly code after enabling kasan is as follows:
c06f1384 <emulate_ldr>:
e92d47f0	push	{r4, r5, r6, r7, r8, r9, sl, lr}
e282803c	add	r8, r2, #60     ; 0x3c
e1a05000	mov	r5, r0
e7e37855	ubfx	r7, r5, #16, #4
e1a00008	mov	r0, r8
e1a09001	mov	r9, r1
e1a04002	mov	r4, r2
ebf35462	bl	c03c6530 <__asan_load4>
e357000f	cmp	r7, #15
e7e36655	ubfx	r6, r5, #12, #4
e205a00f	and	sl, r5, #15
0a000001	beq	c06f13bc <emulate_ldr+0x38>
e0840107	add	r0, r4, r7, lsl #2
ebf3545c	bl	c03c6530 <__asan_load4>
e084010a	add	r0, r4, sl, lsl #2
ebf3545a	bl	c03c6530 <__asan_load4>
e2890010	add	r0, r9, #16
ebf35458	bl	c03c6530 <__asan_load4>
e5990010	ldr	r0, [r9, #16]
e12fff30	blx	r0
e356000f	cm	r6, #15
1a000014	bne	c06f1430 <emulate_ldr+0xac>
e1a06000	mov	r6, r0
e2840040	add	r0, r4, #64     ; 0x40
......

when running in emulate_ldr to simulate the ldr instruction, panic
occurred, and the log is as follows:
Unable to handle kernel NULL pointer dereference at virtual address
00000090
pgd = ecb46400
[00000090] *pgd=2e0fa003, *pmd=00000000
Internal error: Oops: 206 [#1] SMP ARM
PC is at cap_capable+0x14/0xb0
LR is at emulate_ldr+0x50/0xc0
psr: 600d0293 sp : ecd63af8  ip : 00000004  fp : c0a7c30c
r10: 00000000  r9 : c30897f4  r8 : ecd63cd4
r7 : 0000000f  r6 : 0000000a  r5 : e59fa090  r4 : ecd63c98
r3 : c06ae294  r2 : 00000000  r1 : b7611300  r0 : bf4ec008
Flags: nZCv  IRQs off  FIQs on  Mode SVC_32  ISA ARM  Segment user
Control: 32c5387d  Table: 2d546400  DAC: 55555555
Process bash (pid: 1643, stack limit = 0xecd60190)
(cap_capable) from (kprobe_handler+0x218/0x340)
(kprobe_handler) from (kprobe_trap_handler+0x24/0x48)
(kprobe_trap_handler) from (do_undefinstr+0x13c/0x364)
(do_undefinstr) from (__und_svc_finish+0x0/0x30)
(__und_svc_finish) from (cap_capable+0x18/0xb0)
(cap_capable) from (cap_vm_enough_memory+0x38/0x48)
(cap_vm_enough_memory) from
(security_vm_enough_memory_mm+0x48/0x6c)
(security_vm_enough_memory_mm) from
(copy_process.constprop.5+0x16b4/0x25c8)
(copy_process.constprop.5) from (_do_fork+0xe8/0x55c)
(_do_fork) from (SyS_clone+0x1c/0x24)
(SyS_clone) from (__sys_trace_return+0x0/0x10)
Code: 0050a0e1 6c0080e2 0140a0e1 0260a0e1 (f801f0e7)

Fixes: 35aa1df ("ARM kprobes: instruction single-stepping support")
Fixes: 4210157 ("ARM: 9017/2: Enable KASan for ARM")
Signed-off-by: huangshaobo <huangshaobo6@huawei.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
zhiwang1 pushed a commit that referenced this issue Mar 7, 2022
When bringing down the netdevice or system shutdown, a panic can be
triggered while accessing the sysfs path because the device is already
removed.

    [  755.549084] mlx5_core 0000:12:00.1: Shutdown was called
    [  756.404455] mlx5_core 0000:12:00.0: Shutdown was called
    ...
    [  757.937260] BUG: unable to handle kernel NULL pointer dereference at           (null)
    [  758.031397] IP: [<ffffffff8ee11acb>] dma_pool_alloc+0x1ab/0x280

    crash> bt
    ...
    PID: 12649  TASK: ffff8924108f2100  CPU: 1   COMMAND: "amsd"
    ...
     #9 [ffff89240e1a38b0] page_fault at ffffffff8f38c778
        [exception RIP: dma_pool_alloc+0x1ab]
        RIP: ffffffff8ee11acb  RSP: ffff89240e1a3968  RFLAGS: 00010046
        RAX: 0000000000000246  RBX: ffff89243d874100  RCX: 0000000000001000
        RDX: 0000000000000000  RSI: 0000000000000246  RDI: ffff89243d874090
        RBP: ffff89240e1a39c0   R8: 000000000001f080   R9: ffff8905ffc03c00
        R10: ffffffffc04680d4  R11: ffffffff8edde9fd  R12: 00000000000080d0
        R13: ffff89243d874090  R14: ffff89243d874080  R15: 0000000000000000
        ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
    #10 [ffff89240e1a39c8] mlx5_alloc_cmd_msg at ffffffffc04680f3 [mlx5_core]
    #11 [ffff89240e1a3a18] cmd_exec at ffffffffc046ad62 [mlx5_core]
    #12 [ffff89240e1a3ab8] mlx5_cmd_exec at ffffffffc046b4fb [mlx5_core]
    #13 [ffff89240e1a3ae8] mlx5_core_access_reg at ffffffffc0475434 [mlx5_core]
    #14 [ffff89240e1a3b40] mlx5e_get_fec_caps at ffffffffc04a7348 [mlx5_core]
    #15 [ffff89240e1a3bb0] get_fec_supported_advertised at ffffffffc04992bf [mlx5_core]
    #16 [ffff89240e1a3c08] mlx5e_get_link_ksettings at ffffffffc049ab36 [mlx5_core]
    #17 [ffff89240e1a3ce8] __ethtool_get_link_ksettings at ffffffff8f25db46
    #18 [ffff89240e1a3d48] speed_show at ffffffff8f277208
    #19 [ffff89240e1a3dd8] dev_attr_show at ffffffff8f0b70e3
    #20 [ffff89240e1a3df8] sysfs_kf_seq_show at ffffffff8eedbedf
    #21 [ffff89240e1a3e18] kernfs_seq_show at ffffffff8eeda596
    #22 [ffff89240e1a3e28] seq_read at ffffffff8ee76d10
    #23 [ffff89240e1a3e98] kernfs_fop_read at ffffffff8eedaef5
    #24 [ffff89240e1a3ed8] vfs_read at ffffffff8ee4e3ff
    #25 [ffff89240e1a3f08] sys_read at ffffffff8ee4f27f
    #26 [ffff89240e1a3f50] system_call_fastpath at ffffffff8f395f92

    crash> net_device.state ffff89443b0c0000
      state = 0x5  (__LINK_STATE_START| __LINK_STATE_NOCARRIER)

To prevent this scenario, we also make sure that the netdevice is present.

Signed-off-by: suresh kumar <suresh2514@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
zhiwang1 pushed a commit that referenced this issue Apr 19, 2022
The following WARN is triggered from kvm_vm_ioctl_set_clock():
 WARNING: CPU: 10 PID: 579353 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:3161 mark_page_dirty_in_slot+0x6c/0x80 [kvm]
 ...
 CPU: 10 PID: 579353 Comm: qemu-system-x86 Tainted: G        W  O      5.16.0.stable #20
 Hardware name: LENOVO 20UF001CUS/20UF001CUS, BIOS R1CET65W(1.34 ) 06/17/2021
 RIP: 0010:mark_page_dirty_in_slot+0x6c/0x80 [kvm]
 ...
 Call Trace:
  <TASK>
  ? kvm_write_guest+0x114/0x120 [kvm]
  kvm_hv_invalidate_tsc_page+0x9e/0xf0 [kvm]
  kvm_arch_vm_ioctl+0xa26/0xc50 [kvm]
  ? schedule+0x4e/0xc0
  ? __cond_resched+0x1a/0x50
  ? futex_wait+0x166/0x250
  ? __send_signal+0x1f1/0x3d0
  kvm_vm_ioctl+0x747/0xda0 [kvm]
  ...

The WARN was introduced by commit 03c0304a86bc ("KVM: Warn if
mark_page_dirty() is called without an active vCPU") but the change seems
to be correct (unlike Hyper-V TSC page update mechanism). In fact, there's
no real need to actually write to guest memory to invalidate TSC page, this
can be done by the first vCPU which goes through kvm_guest_time_update().

Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220407201013.963226-1-vkuznets@redhat.com>
zhiwang1 pushed a commit that referenced this issue Jun 2, 2022
…de (v2)

Commit 30e114e ("drm/i915/tc: Check for DP-alt, legacy sinks before
taking PHY ownership") defaults any disconnected Type-C ports to TBT-alt
mode which presents a problem (which could most likely result in a system
hang) when userspace forces a modeset on a Type-C port that is wired for
legacy HDMI. The following warning is seen when Weston forces a modeset
on a disconnected legacy Type-C port (HDMI) on a TGL based Gigabyte system:
(https://www.gigabyte.com/Mini-PcBarebone/GB-BSi3-1115G4-rev-10#ov)

Missing case (clock == 173000)
WARNING: CPU: 1 PID: 438 at drivers/gpu/drm/i915/display/intel_ddi.c:245
icl_ddi_tc_enable_clock.cold+0x16a/0x1cf [i915]
CPU: 1 PID: 438 Comm: kworker/u8:3 Tainted: G     U  W   E
5.18.0-rc5-drm-tip+ #20
Hardware name: GIGABYTE GB-BSi3-1115G4/GB-BSi3-1115G4, BIOS F9
10/16/2021
Workqueue: i915_modeset intel_atomic_commit_work [i915]
RIP: 0010:icl_ddi_tc_enable_clock.cold+0x16a/0x1cf [i915]
Code: 74 6c 7f 10 81 fd d0 78 02 00 74 6d 81 fd b0 1e 04 00 74 70 48 63
d5 48 c7 c6 c0 7b ab c0 48 c7 c7 20 75 ab c0 e8 b8 b5 c1 f0 <0f> 0b 45
31 ed e9 fb fe ff ff 49 63 d5
 48 c7 c6 80 7b ab c0 48 c7
RSP: 0018:ffff8882522c78f0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
RDX: 0000000000000027 RSI: 0000000000000004 RDI: ffffed104a458f10
RBP: 0000000000011558 R08: ffffffffb078de4e R09: ffff888269ca748b
R10: ffffed104d394e91 R11: 0000000000000000 R12: ffff888255a318f8
R13: 0000000000000002 R14: ffff888255a30000 R15: ffff88823ef00348
FS:  0000000000000000(0000) GS:ffff888269c80000(0000)
knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd7afa42000 CR3: 0000000255c02004 CR4: 00000000007706e0
PKRU: 55555554
Call Trace:
<TASK>
intel_ddi_pre_enable.cold+0x96/0x5bf [i915]
intel_encoders_pre_enable+0x10e/0x140 [i915]
hsw_crtc_enable+0x207/0x99d [i915]
? ilk_crtc_enable.cold+0x2a/0x2a [i915]
? prepare_to_wait_exclusive+0x120/0x120
intel_enable_crtc+0x9a/0xf0 [i915]
skl_commit_modeset_enables+0x466/0x820 [i915]
? intel_commit_modeset_enables+0xd0/0xd0 [i915]
? intel_mbus_dbox_update+0x1ed/0x250 [i915]
intel_atomic_commit_tail+0xf2d/0x3040 [i915]
_raw_spin_lock_irqsave+0x87/0xe0
_raw_read_unlock_irqrestore+0x40/0x40
__update_load_avg_cfs_rq+0x70/0x5c0
__i915_sw_fence_complete+0x85/0x3b0 [i915]
? intel_get_crtc_new_encoder+0x190/0x190 [i915]
? sysvec_irq_work+0x13/0x90
? asm_sysvec_irq_work+0x12/0x20
? _raw_spin_lock_irq+0x82/0xd0
? read_word_at_a_time+0xe/0x20
? process_one_work+0x393/0x690
process_one_work+0x393/0x690
worker_thread+0x2b7/0x620
? process_one_work+0x690/0x690
kthread+0x15a/0x190
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30

Continuing with the modeset without setting the DDI clock results in
more warnings and eventually a system hang. This does not seem to
happen with disconnected legacy or DP-alt DP ports because the clock
rate defaults to 162000 (which is a valid TBT clock) during the link
training process. Therefore, to fix this issue, this patch avoids
setting disconnected Type-C legacy ports to TBT-alt mode which prevents
the selection of TBT PLL when a modeset is forced.

v2: (Imre)
- Retain the check for legacy hotplug live status to account for
incorrect VBTs.

Cc: Imre Deak <imre.deak@intel.com>
Cc: José Roberto de Souza <jose.souza@intel.com>
Signed-off-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Reviewed-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: Imre Deak <imre.deak@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20220526001939.4031112-2-vivek.kasireddy@intel.com
zhenyw pushed a commit that referenced this issue Apr 28, 2023
When a system with E810 with existing VFs gets rebooted the following
hang may be observed.

 Pid 1 is hung in iavf_remove(), part of a network driver:
 PID: 1        TASK: ffff965400e5a340  CPU: 24   COMMAND: "systemd-shutdow"
  #0 [ffffaad04005fa50] __schedule at ffffffff8b3239cb
  #1 [ffffaad04005fae8] schedule at ffffffff8b323e2d
  #2 [ffffaad04005fb00] schedule_hrtimeout_range_clock at ffffffff8b32cebc
  #3 [ffffaad04005fb80] usleep_range_state at ffffffff8b32c930
  #4 [ffffaad04005fbb0] iavf_remove at ffffffffc12b9b4c [iavf]
  #5 [ffffaad04005fbf0] pci_device_remove at ffffffff8add7513
  #6 [ffffaad04005fc10] device_release_driver_internal at ffffffff8af08baa
  #7 [ffffaad04005fc40] pci_stop_bus_device at ffffffff8adcc5fc
  #8 [ffffaad04005fc60] pci_stop_and_remove_bus_device at ffffffff8adcc81e
  #9 [ffffaad04005fc70] pci_iov_remove_virtfn at ffffffff8adf9429
 #10 [ffffaad04005fca8] sriov_disable at ffffffff8adf98e4
 #11 [ffffaad04005fcc8] ice_free_vfs at ffffffffc04bb2c8 [ice]
 #12 [ffffaad04005fd10] ice_remove at ffffffffc04778fe [ice]
 #13 [ffffaad04005fd38] ice_shutdown at ffffffffc0477946 [ice]
 #14 [ffffaad04005fd50] pci_device_shutdown at ffffffff8add58f1
 #15 [ffffaad04005fd70] device_shutdown at ffffffff8af05386
 #16 [ffffaad04005fd98] kernel_restart at ffffffff8a92a870
 #17 [ffffaad04005fda8] __do_sys_reboot at ffffffff8a92abd6
 #18 [ffffaad04005fee0] do_syscall_64 at ffffffff8b317159
 #19 [ffffaad04005ff08] __context_tracking_enter at ffffffff8b31b6fc
 #20 [ffffaad04005ff18] syscall_exit_to_user_mode at ffffffff8b31b50d
 #21 [ffffaad04005ff28] do_syscall_64 at ffffffff8b317169
 #22 [ffffaad04005ff50] entry_SYSCALL_64_after_hwframe at ffffffff8b40009b
     RIP: 00007f1baa5c13d7  RSP: 00007fffbcc55a98  RFLAGS: 00000202
     RAX: ffffffffffffffda  RBX: 0000000000000000  RCX: 00007f1baa5c13d7
     RDX: 0000000001234567  RSI: 0000000028121969  RDI: 00000000fee1dead
     RBP: 00007fffbcc55ca0   R8: 0000000000000000   R9: 00007fffbcc54e90
     R10: 00007fffbcc55050  R11: 0000000000000202  R12: 0000000000000005
     R13: 0000000000000000  R14: 00007fffbcc55af0  R15: 0000000000000000
     ORIG_RAX: 00000000000000a9  CS: 0033  SS: 002b

During reboot all drivers PM shutdown callbacks are invoked.
In iavf_shutdown() the adapter state is changed to __IAVF_REMOVE.
In ice_shutdown() the call chain above is executed, which at some point
calls iavf_remove(). However iavf_remove() expects the VF to be in one
of the states __IAVF_RUNNING, __IAVF_DOWN or __IAVF_INIT_FAILED. If
that's not the case it sleeps forever.
So if iavf_shutdown() gets invoked before iavf_remove() the system will
hang indefinitely because the adapter is already in state __IAVF_REMOVE.

Fix this by returning from iavf_remove() if the state is __IAVF_REMOVE,
as we already went through iavf_shutdown().

Fixes: 9745780 ("iavf: Add waiting so the port is initialized in remove")
Fixes: a841733 ("iavf: Fix race condition between iavf_shutdown and iavf_remove")
Reported-by: Marius Cornea <mcornea@redhat.com>
Signed-off-by: Stefan Assmann <sassmann@kpanic.de>
Reviewed-by: Michal Kubiak <michal.kubiak@intel.com>
Tested-by: Rafal Romanowski <rafal.romanowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests