-
Notifications
You must be signed in to change notification settings - Fork 5
[test] master_test #2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 18, 2022
…egulator The interrupt pin of the external ethernet phy is used, instead of the enable-gpio pin of the tf-io regulator. The GPIOE_2 pin is located in the gpio_ao bank. This causes phy interrupt problems at system startup. [ 76.645190] irq 36: nobody cared (try booting with the "irqpoll" option) [ 76.649617] CPU: 0 PID: 1416 Comm: irq/36-0.0:00 Not tainted 5.16.0 #2 [ 76.649629] Hardware name: Hardkernel ODROID-HC4 (DT) [ 76.649635] Call trace: [ 76.649638] dump_backtrace+0x0/0x1c8 [ 76.649658] show_stack+0x14/0x60 [ 76.649667] dump_stack_lvl+0x64/0x7c [ 76.649676] dump_stack+0x14/0x2c [ 76.649683] __report_bad_irq+0x38/0xe8 [ 76.649695] note_interrupt+0x220/0x3a0 [ 76.649704] handle_irq_event_percpu+0x58/0x88 [ 76.649713] handle_irq_event+0x44/0xd8 [ 76.649721] handle_fasteoi_irq+0xa8/0x130 [ 76.649730] generic_handle_domain_irq+0x38/0x58 [ 76.649738] gic_handle_irq+0x9c/0xb8 [ 76.649747] call_on_irq_stack+0x28/0x38 [ 76.649755] do_interrupt_handler+0x7c/0x80 [ 76.649763] el1_interrupt+0x34/0x80 [ 76.649772] el1h_64_irq_handler+0x14/0x20 [ 76.649781] el1h_64_irq+0x74/0x78 [ 76.649788] irq_finalize_oneshot.part.56+0x68/0xf8 [ 76.649796] irq_thread_fn+0x5c/0x98 [ 76.649804] irq_thread+0x13c/0x260 [ 76.649812] kthread+0x144/0x178 [ 76.649822] ret_from_fork+0x10/0x20 [ 76.649830] handlers: [ 76.653170] [<0000000025a6cd31>] irq_default_primary_handler threaded [<0000000093580eb7>] phy_interrupt [ 76.661256] Disabling IRQ #36 Fixes: 1f80a5c ("arm64: dts: meson-sm1-odroid: add missing enable gpio and supply for tf_io regulator") Signed-off-by: Lutz Koschorreck <theleks@ko-hh.de> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> [narmstrong: removed spurious invalid & blank lines from commit message] Link: https://lore.kernel.org/r/20220127130537.GA187347@odroid-VirtualBox
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 18, 2022
When using the flushoncommit mount option, during almost every transaction
commit we trigger a warning from __writeback_inodes_sb_nr():
$ cat fs/fs-writeback.c:
(...)
static void __writeback_inodes_sb_nr(struct super_block *sb, ...
{
(...)
WARN_ON(!rwsem_is_locked(&sb->s_umount));
(...)
}
(...)
The trace produced in dmesg looks like the following:
[947.473890] WARNING: CPU: 5 PID: 930 at fs/fs-writeback.c:2610 __writeback_inodes_sb_nr+0x7e/0xb3
[947.481623] Modules linked in: nfsd nls_cp437 cifs asn1_decoder cifs_arc4 fscache cifs_md4 ipmi_ssif
[947.489571] CPU: 5 PID: 930 Comm: btrfs-transacti Not tainted 95.16.3-srb-asrock-00001-g36437ad63879 #186
[947.497969] RIP: 0010:__writeback_inodes_sb_nr+0x7e/0xb3
[947.502097] Code: 24 10 4c 89 44 24 18 c6 (...)
[947.519760] RSP: 0018:ffffc90000777e10 EFLAGS: 00010246
[947.523818] RAX: 0000000000000000 RBX: 0000000000963300 RCX: 0000000000000000
[947.529765] RDX: 0000000000000000 RSI: 000000000000fa51 RDI: ffffc90000777e50
[947.535740] RBP: ffff888101628a90 R08: ffff888100955800 R09: ffff888100956000
[947.541701] R10: 0000000000000002 R11: 0000000000000001 R12: ffff888100963488
[947.547645] R13: ffff888100963000 R14: ffff888112fb7200 R15: ffff888100963460
[947.553621] FS: 0000000000000000(0000) GS:ffff88841fd40000(0000) knlGS:0000000000000000
[947.560537] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[947.565122] CR2: 0000000008be50c4 CR3: 000000000220c000 CR4: 00000000001006e0
[947.571072] Call Trace:
[947.572354] <TASK>
[947.573266] btrfs_commit_transaction+0x1f1/0x998
[947.576785] ? start_transaction+0x3ab/0x44e
[947.579867] ? schedule_timeout+0x8a/0xdd
[947.582716] transaction_kthread+0xe9/0x156
[947.585721] ? btrfs_cleanup_transaction.isra.0+0x407/0x407
[947.590104] kthread+0x131/0x139
[947.592168] ? set_kthread_struct+0x32/0x32
[947.595174] ret_from_fork+0x22/0x30
[947.597561] </TASK>
[947.598553] ---[ end trace 644721052755541c ]---
This is because we started using writeback_inodes_sb() to flush delalloc
when committing a transaction (when using -o flushoncommit), in order to
avoid deadlocks with filesystem freeze operations. This change was made
by commit ce8ea7c ("btrfs: don't call btrfs_start_delalloc_roots
in flushoncommit"). After that change we started producing that warning,
and every now and then a user reports this since the warning happens too
often, it spams dmesg/syslog, and a user is unsure if this reflects any
problem that might compromise the filesystem's reliability.
We can not just lock the sb->s_umount semaphore before calling
writeback_inodes_sb(), because that would at least deadlock with
filesystem freezing, since at fs/super.c:freeze_super() sync_filesystem()
is called while we are holding that semaphore in write mode, and that can
trigger a transaction commit, resulting in a deadlock. It would also
trigger the same type of deadlock in the unmount path. Possibly, it could
also introduce some other locking dependencies that lockdep would report.
To fix this call try_to_writeback_inodes_sb() instead of
writeback_inodes_sb(), because that will try to read lock sb->s_umount
and then will only call writeback_inodes_sb() if it was able to lock it.
This is fine because the cases where it can't read lock sb->s_umount
are during a filesystem unmount or during a filesystem freeze - in those
cases sb->s_umount is write locked and sync_filesystem() is called, which
calls writeback_inodes_sb(). In other words, in all cases where we can't
take a read lock on sb->s_umount, writeback is already being triggered
elsewhere.
An alternative would be to call btrfs_start_delalloc_roots() with a
number of pages different from LONG_MAX, for example matching the number
of delalloc bytes we currently have, in which case we would end up
starting all delalloc with filemap_fdatawrite_wbc() and not with an
async flush via filemap_flush() - that is only possible after the rather
recent commit e076ab2 ("btrfs: shrink delalloc pages instead of
full inodes"). However that creates a whole new can of worms due to new
lock dependencies, which lockdep complains, like for example:
[ 8948.247280] ======================================================
[ 8948.247823] WARNING: possible circular locking dependency detected
[ 8948.248353] 5.17.0-rc1-btrfs-next-111 #1 Not tainted
[ 8948.248786] ------------------------------------------------------
[ 8948.249320] kworker/u16:18/933570 is trying to acquire lock:
[ 8948.249812] ffff9b3de1591690 (sb_internal#2){.+.+}-{0:0}, at: find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.250638]
but task is already holding lock:
[ 8948.251140] ffff9b3e09c717d8 (&root->delalloc_mutex){+.+.}-{3:3}, at: start_delalloc_inodes+0x78/0x400 [btrfs]
[ 8948.252018]
which lock already depends on the new lock.
[ 8948.252710]
the existing dependency chain (in reverse order) is:
[ 8948.253343]
-> #2 (&root->delalloc_mutex){+.+.}-{3:3}:
[ 8948.253950] __mutex_lock+0x90/0x900
[ 8948.254354] start_delalloc_inodes+0x78/0x400 [btrfs]
[ 8948.254859] btrfs_start_delalloc_roots+0x194/0x2a0 [btrfs]
[ 8948.255408] btrfs_commit_transaction+0x32f/0xc00 [btrfs]
[ 8948.255942] btrfs_mksubvol+0x380/0x570 [btrfs]
[ 8948.256406] btrfs_mksnapshot+0x81/0xb0 [btrfs]
[ 8948.256870] __btrfs_ioctl_snap_create+0x17f/0x190 [btrfs]
[ 8948.257413] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[ 8948.257961] btrfs_ioctl+0x1196/0x3630 [btrfs]
[ 8948.258418] __x64_sys_ioctl+0x83/0xb0
[ 8948.258793] do_syscall_64+0x3b/0xc0
[ 8948.259146] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 8948.259709]
-> #1 (&fs_info->delalloc_root_mutex){+.+.}-{3:3}:
[ 8948.260330] __mutex_lock+0x90/0x900
[ 8948.260692] btrfs_start_delalloc_roots+0x97/0x2a0 [btrfs]
[ 8948.261234] btrfs_commit_transaction+0x32f/0xc00 [btrfs]
[ 8948.261766] btrfs_set_free_space_cache_v1_active+0x38/0x60 [btrfs]
[ 8948.262379] btrfs_start_pre_rw_mount+0x119/0x180 [btrfs]
[ 8948.262909] open_ctree+0x1511/0x171e [btrfs]
[ 8948.263359] btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 8948.263863] legacy_get_tree+0x30/0x50
[ 8948.264242] vfs_get_tree+0x28/0xc0
[ 8948.264594] vfs_kern_mount.part.0+0x71/0xb0
[ 8948.265017] btrfs_mount+0x11d/0x3a0 [btrfs]
[ 8948.265462] legacy_get_tree+0x30/0x50
[ 8948.265851] vfs_get_tree+0x28/0xc0
[ 8948.266203] path_mount+0x2d4/0xbe0
[ 8948.266554] __x64_sys_mount+0x103/0x140
[ 8948.266940] do_syscall_64+0x3b/0xc0
[ 8948.267300] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 8948.267790]
-> #0 (sb_internal#2){.+.+}-{0:0}:
[ 8948.268322] __lock_acquire+0x12e8/0x2260
[ 8948.268733] lock_acquire+0xd7/0x310
[ 8948.269092] start_transaction+0x44c/0x6e0 [btrfs]
[ 8948.269591] find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.270087] btrfs_reserve_extent+0x14b/0x280 [btrfs]
[ 8948.270588] cow_file_range+0x17e/0x490 [btrfs]
[ 8948.271051] btrfs_run_delalloc_range+0x345/0x7a0 [btrfs]
[ 8948.271586] writepage_delalloc+0xb5/0x170 [btrfs]
[ 8948.272071] __extent_writepage+0x156/0x3c0 [btrfs]
[ 8948.272579] extent_write_cache_pages+0x263/0x460 [btrfs]
[ 8948.273113] extent_writepages+0x76/0x130 [btrfs]
[ 8948.273573] do_writepages+0xd2/0x1c0
[ 8948.273942] filemap_fdatawrite_wbc+0x68/0x90
[ 8948.274371] start_delalloc_inodes+0x17f/0x400 [btrfs]
[ 8948.274876] btrfs_start_delalloc_roots+0x194/0x2a0 [btrfs]
[ 8948.275417] flush_space+0x1f2/0x630 [btrfs]
[ 8948.275863] btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs]
[ 8948.276438] process_one_work+0x252/0x5a0
[ 8948.276829] worker_thread+0x55/0x3b0
[ 8948.277189] kthread+0xf2/0x120
[ 8948.277506] ret_from_fork+0x22/0x30
[ 8948.277868]
other info that might help us debug this:
[ 8948.278548] Chain exists of:
sb_internal#2 --> &fs_info->delalloc_root_mutex --> &root->delalloc_mutex
[ 8948.279601] Possible unsafe locking scenario:
[ 8948.280102] CPU0 CPU1
[ 8948.280508] ---- ----
[ 8948.280915] lock(&root->delalloc_mutex);
[ 8948.281271] lock(&fs_info->delalloc_root_mutex);
[ 8948.281915] lock(&root->delalloc_mutex);
[ 8948.282487] lock(sb_internal#2);
[ 8948.282800]
*** DEADLOCK ***
[ 8948.283333] 4 locks held by kworker/u16:18/933570:
[ 8948.283750] #0: ffff9b3dc00a9d48 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x1d2/0x5a0
[ 8948.284609] #1: ffffa90349dafe70 ((work_completion)(&fs_info->async_data_reclaim_work)){+.+.}-{0:0}, at: process_one_work+0x1d2/0x5a0
[ 8948.285637] #2: ffff9b3e14db5040 (&fs_info->delalloc_root_mutex){+.+.}-{3:3}, at: btrfs_start_delalloc_roots+0x97/0x2a0 [btrfs]
[ 8948.286674] #3: ffff9b3e09c717d8 (&root->delalloc_mutex){+.+.}-{3:3}, at: start_delalloc_inodes+0x78/0x400 [btrfs]
[ 8948.287596]
stack backtrace:
[ 8948.287975] CPU: 3 PID: 933570 Comm: kworker/u16:18 Not tainted 5.17.0-rc1-btrfs-next-111 #1
[ 8948.288677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 8948.289649] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
[ 8948.290298] Call Trace:
[ 8948.290517] <TASK>
[ 8948.290700] dump_stack_lvl+0x59/0x73
[ 8948.291026] check_noncircular+0xf3/0x110
[ 8948.291375] ? start_transaction+0x228/0x6e0 [btrfs]
[ 8948.291826] __lock_acquire+0x12e8/0x2260
[ 8948.292241] lock_acquire+0xd7/0x310
[ 8948.292714] ? find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.293241] ? lock_is_held_type+0xea/0x140
[ 8948.293601] start_transaction+0x44c/0x6e0 [btrfs]
[ 8948.294055] ? find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.294518] find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.294957] ? _raw_spin_unlock+0x29/0x40
[ 8948.295312] ? btrfs_get_alloc_profile+0x124/0x290 [btrfs]
[ 8948.295813] btrfs_reserve_extent+0x14b/0x280 [btrfs]
[ 8948.296270] cow_file_range+0x17e/0x490 [btrfs]
[ 8948.296691] btrfs_run_delalloc_range+0x345/0x7a0 [btrfs]
[ 8948.297175] ? find_lock_delalloc_range+0x247/0x270 [btrfs]
[ 8948.297678] writepage_delalloc+0xb5/0x170 [btrfs]
[ 8948.298123] __extent_writepage+0x156/0x3c0 [btrfs]
[ 8948.298570] extent_write_cache_pages+0x263/0x460 [btrfs]
[ 8948.299061] extent_writepages+0x76/0x130 [btrfs]
[ 8948.299495] do_writepages+0xd2/0x1c0
[ 8948.299817] ? sched_clock_cpu+0xd/0x110
[ 8948.300160] ? lock_release+0x155/0x4a0
[ 8948.300494] filemap_fdatawrite_wbc+0x68/0x90
[ 8948.300874] ? do_raw_spin_unlock+0x4b/0xa0
[ 8948.301243] start_delalloc_inodes+0x17f/0x400 [btrfs]
[ 8948.301706] ? lock_release+0x155/0x4a0
[ 8948.302055] btrfs_start_delalloc_roots+0x194/0x2a0 [btrfs]
[ 8948.302564] flush_space+0x1f2/0x630 [btrfs]
[ 8948.302970] btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs]
[ 8948.303510] process_one_work+0x252/0x5a0
[ 8948.303860] ? process_one_work+0x5a0/0x5a0
[ 8948.304221] worker_thread+0x55/0x3b0
[ 8948.304543] ? process_one_work+0x5a0/0x5a0
[ 8948.304904] kthread+0xf2/0x120
[ 8948.305184] ? kthread_complete_and_exit+0x20/0x20
[ 8948.305598] ret_from_fork+0x22/0x30
[ 8948.305921] </TASK>
It all comes from the fact that btrfs_start_delalloc_roots() takes the
delalloc_root_mutex, in the transaction commit path we are holding a
read lock on one of the superblock's freeze semaphores (via
sb_start_intwrite()), the async reclaim task can also do a call to
btrfs_start_delalloc_roots(), which ends up triggering writeback with
calls to filemap_fdatawrite_wbc(), resulting in extent allocation which
in turn can call btrfs_start_transaction(), which will result in taking
the freeze semaphore via sb_start_intwrite(), forming a nasty dependency
on all those locks which can be taken in different orders by different
code paths.
So just adopt the simple approach of calling try_to_writeback_inodes_sb()
at btrfs_start_delalloc_flush().
Link: https://lore.kernel.org/linux-btrfs/20220130005258.GA7465@cuci.nl/
Link: https://lore.kernel.org/linux-btrfs/43acc426-d683-d1b6-729d-c6bc4a2fff4d@gmail.com/
Link: https://lore.kernel.org/linux-btrfs/6833930a-08d7-6fbc-0141-eb9cdfd6bb4d@gmail.com/
Link: https://lore.kernel.org/linux-btrfs/20190322041731.GF16651@hungrycats.org/
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[ add more link reports ]
Signed-off-by: David Sterba <dsterba@suse.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 18, 2022
Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc75/0xe30 [btrfs] [372.977706] start_transaction+0x938/0x10a0 [btrfs] [372.997168] transaction_kthread+0x19d/0x3c0 [btrfs] [373.013021] ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs] [373.031678] kthread+0x3b9/0x490 [373.047420] ? _raw_spin_unlock_irq+0x24/0x50 [373.064645] ? set_kthread_struct+0x100/0x100 [373.078571] ret_from_fork+0x22/0x30 [373.091197] </TASK> [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds. [373.114147] Not tainted 5.16.0-rc8 #7 [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.130393] task:btrfs state:D stack: 0 pid: 3145 ppid: 3141 flags:0x00004000 [373.140998] Call Trace: [373.145501] <TASK> [373.149654] __schedule+0xb56/0x4850 [373.155306] ? io_schedule_timeout+0x190/0x190 [373.161965] ? lockdep_hardirqs_on+0x7e/0x100 [373.168469] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [373.175468] schedule+0xe0/0x270 [373.180814] wait_for_commit+0x104/0x150 [btrfs] [373.187643] ? test_and_set_bit+0x20/0x20 [btrfs] [373.194772] ? kmem_cache_free+0x124/0x550 [373.201191] ? btrfs_put_transaction+0x69/0x3d0 [btrfs] [373.208738] ? finish_wait+0x270/0x270 [373.214704] ? __btrfs_end_transaction+0x347/0x7b0 [btrfs] [373.222342] btrfs_commit_transaction+0x44d/0x2610 [btrfs] [373.230233] ? join_transaction+0x255/0xe30 [btrfs] [373.237334] ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs] [373.245251] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [373.253296] relocate_block_group+0x105/0xc20 [btrfs] [373.260533] ? mutex_lock_io_nested+0x1270/0x1270 [373.267516] ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs] [373.275155] ? merge_reloc_roots+0x710/0x710 [btrfs] [373.283602] ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs] [373.291934] ? kmem_cache_free+0x124/0x550 [373.298180] btrfs_relocate_block_group+0x35c/0x930 [btrfs] [373.306047] btrfs_relocate_chunk+0x85/0x210 [btrfs] [373.313229] btrfs_balance+0x12f4/0x2d20 [btrfs] [373.320227] ? lock_release+0x3a9/0x6d0 [373.326206] ? btrfs_relocate_chunk+0x210/0x210 [btrfs] [373.333591] ? lock_is_held_type+0xe4/0x140 [373.340031] ? rcu_read_lock_sched_held+0x3f/0x70 [373.346910] btrfs_ioctl_balance+0x548/0x700 [btrfs] [373.354207] btrfs_ioctl+0x7f2/0x71b0 [btrfs] [373.360774] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.367957] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.375327] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.383841] ? find_held_lock+0x2c/0x110 [373.389993] ? lock_release+0x3a9/0x6d0 [373.395828] ? mntput_no_expire+0xf7/0xad0 [373.402083] ? lock_is_held_type+0xe4/0x140 [373.408249] ? vfs_fileattr_set+0x9f0/0x9f0 [373.414486] ? selinux_file_ioctl+0x349/0x4e0 [373.420938] ? trace_raw_output_lock+0xb4/0xe0 [373.427442] ? selinux_inode_getsecctx+0x80/0x80 [373.434224] ? lockdep_hardirqs_on+0x7e/0x100 [373.440660] ? force_qs_rnp+0x2a0/0x6b0 [373.446534] ? lock_is_held_type+0x9b/0x140 [373.452763] ? __blkcg_punt_bio_submit+0x1b0/0x1b0 [373.459732] ? security_file_ioctl+0x50/0x90 [373.466089] __x64_sys_ioctl+0x127/0x190 [373.472022] do_syscall_64+0x3b/0x90 [373.477513] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.484823] RIP: 0033:0x7f8f4af7e2bb [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003 [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0 [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001 [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002 [373.546506] </TASK> [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds. [373.559383] Not tainted 5.16.0-rc8 #7 [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.575748] task:btrfs state:D stack: 0 pid: 3146 ppid: 2168 flags:0x00000000 [373.586314] Call Trace: [373.590846] <TASK> [373.595121] __schedule+0xb56/0x4850 [373.600901] ? __lock_acquire+0x23db/0x5030 [373.607176] ? io_schedule_timeout+0x190/0x190 [373.613954] schedule+0xe0/0x270 [373.619157] schedule_timeout+0x168/0x220 [373.625170] ? usleep_range_state+0x150/0x150 [373.631653] ? mark_held_locks+0x9e/0xe0 [373.637767] ? do_raw_spin_lock+0x11e/0x250 [373.643993] ? lockdep_hardirqs_on_prepare+0x17b/0x410 [373.651267] ? _raw_spin_unlock_irq+0x24/0x50 [373.657677] ? lockdep_hardirqs_on+0x7e/0x100 [373.664103] wait_for_completion+0x163/0x250 [373.670437] ? bit_wait_timeout+0x160/0x160 [373.676585] btrfs_quota_disable+0x176/0x9a0 [btrfs] [373.683979] ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs] [373.691340] ? down_write+0xd0/0x130 [373.696880] ? down_write_killable+0x150/0x150 [373.703352] btrfs_ioctl+0x3945/0x71b0 [btrfs] [373.710061] ? find_held_lock+0x2c/0x110 [373.716192] ? lock_release+0x3a9/0x6d0 [373.722047] ? __handle_mm_fault+0x23cd/0x3050 [373.728486] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.737032] ? set_pte+0x6a/0x90 [373.742271] ? do_raw_spin_unlock+0x55/0x1f0 [373.748506] ? lock_is_held_type+0xe4/0x140 [373.754792] ? vfs_fileattr_set+0x9f0/0x9f0 [373.761083] ? selinux_file_ioctl+0x349/0x4e0 [373.767521] ? selinux_inode_getsecctx+0x80/0x80 [373.774247] ? __up_read+0x182/0x6e0 [373.780026] ? count_memcg_events.constprop.0+0x46/0x60 [373.787281] ? up_write+0x460/0x460 [373.792932] ? security_file_ioctl+0x50/0x90 [373.799232] __x64_sys_ioctl+0x127/0x190 [373.805237] do_syscall_64+0x3b/0x90 [373.810947] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.818102] RIP: 0033:0x7f1383ea02bb [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003 [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000 [373.879838] </TASK> [373.884018] Showing all locks held in the system: [373.894250] 3 locks held by kworker/4:1/58: [373.900356] 1 lock held by khungtaskd/63: [373.906333] #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 [373.917307] 3 locks held by kworker/u16:6/103: [373.923938] #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320 [373.936555] #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320 [373.951109] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs] [373.964027] 2 locks held by less/1803: [373.969982] #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80 [373.981295] #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060 [373.992969] 1 lock held by btrfs-transacti/2347: [373.999893] #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs] [374.015872] 3 locks held by btrfs/3145: [374.022298] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs] [374.034456] #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs] [374.047646] #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs] [374.063295] 4 locks held by btrfs/3146: [374.069647] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs] [374.081601] #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs] [374.094283] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs] [374.106885] #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs] [374.126780] ============================================= To avoid the deadlock, wait for the qgroup rescan worker to complete before starting the transaction for the quota disable ioctl. Clear BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to request the worker to complete. On transaction start failure, set the BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag changes can be done safely since the function btrfs_quota_disable is not called concurrently because of fs_info->subvol_sem. Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid another qgroup rescan worker to start after the previous qgroup worker completed. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 18, 2022
…/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 5.17, take #2 - A couple of fixes when handling an exception while a SError has been delivered - Workaround for Cortex-A510's single-step[ erratum
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 18, 2022
Yonghong Song says: ==================== The patch [1] exposed a bpf_timer initialization bug in function check_and_init_map_value(). With bug fix here, the patch [1] can be applied with all selftests passed. Please see individual patches for fix details. [1] https://lore.kernel.org/bpf/20220209070324.1093182-2-memxor@gmail.com/ Changelog: v3 -> v4: . move header file in patch #1 to avoid bpf-next merge conflict v2 -> v3: . switch patch #1 and patch #2 for better bisecting v1 -> v2: . add Fixes tag for patch #1 . rebase against bpf tree ==================== Signed-off-by: Alexei Starovoitov <ast@kernel.org>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 18, 2022
Sebastian Andrzej Siewior says: ==================== net: dev: PREEMPT_RT fixups. this series removes or replaces preempt_disable() and local_irq_save() sections which are problematic on PREEMPT_RT. Patch 2 makes netif_rx() work from any context after I found suggestions for it in an old thread. Should that work, then the context-specific variants could be removed. v2…v3: - #2 - Export __netif_rx() so it can be used by everyone. - Add a lockdep assert to check for interrupt context. - Update the kernel doc and mention that the skb is posted to backlog NAPI. - Use __netif_rx() also in drivers/net/*.c. - Added Toke''s review tag and kept Eric's desptite the changes made. v1…v2: - #1 and #2 - merge patch 1 und 2 from the series (as per Toke). - updated patch description and corrected the first commit number (as per Eric). - #2 - Provide netif_rx() as in v1 and additionally __netif_rx() without local_bh disable()+enable() for the loopback driver. __netif_rx() is not exported (loopback is built-in only) so it won't be used drivers. If this doesn't work then we can still export/ define a wrapper as Eric suggested. - Added a comment that netif_rx() considered legacy. - #3 - Moved ____napi_schedule() into rps_ipi_queued() and renamed it napi_schedule_rps(). https://lore.kernel.org/all/20220204201259.1095226-1-bigeasy@linutronix.de/ v1: https://lore.kernel.org/all/20220202122848.647635-1-bigeasy@linutronix.de ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 22, 2022
Fix a race in the xsk socket teardown code that can lead to a null pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 Code: 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 38 65 48 8b 04 25 28 00 00 00 48 89 45 d0 31 c0 48 8b 87 08 03 00 00 <f6> 80 c0 00 00 00 01 > RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the SKB xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the SKB xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 28, 2022
Fix a race in the xsk socket teardown code that can lead to a null pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 Code: 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 38 65 48 8b 04 25 28 00 00 00 48 89 45 d0 31 c0 48 8b 87 08 03 00 00 <f6> 80 c0 00 00 00 01 > RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the SKB xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the SKB xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. v1 -> v2: * Naming xsk_zc_xmit() -> xsk_wakeup() [Maciej] Fixes: 42fddcc ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 28, 2022
Fix a race in the xsk socket teardown code that can lead to a null pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 Code: 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 38 65 48 8b 04 25 28 00 00 00 48 89 45 d0 31 c0 48 8b 87 08 03 00 00 <f6> 80 c0 00 00 00 01 > RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the SKB xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the SKB xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. v1 -> v2: * Naming xsk_zc_xmit() -> xsk_wakeup() [Maciej] Fixes: 42fddcc ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 28, 2022
Fix a race in the xsk socket teardown code that can lead to a null pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 Code: 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 38 65 48 8b 04 25 28 00 00 00 48 89 45 d0 31 c0 48 8b 87 08 03 00 00 <f6> 80 c0 00 00 00 01 > RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the SKB xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the SKB xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. v1 -> v2: * Naming xsk_zc_xmit() -> xsk_wakeup() [Maciej] Fixes: 42fddcc ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 28, 2022
Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
kernel-patches-bot
pushed a commit
that referenced
this pull request
Feb 28, 2022
…ux/kernel/git/arm64/linux Will Deacon says: ==================== On Tue, Feb 22, 2022 at 10:38:02PM +0000, Will Deacon wrote: > On Thu, 17 Feb 2022 15:22:28 +0800, Hou Tao wrote: > > Atomics support in bpf has already been done by "Atomics for eBPF" > > patch series [1], but it only adds support for x86, and this patchset > > adds support for arm64. > > > > Patch #1 & patch #2 are arm64 related. Patch #1 moves the common used > > macro AARCH64_BREAK_FAULT into insn-def.h for insn.h. Patch #2 adds > > necessary encoder helpers for atomic operations. > > > > [...] > > Applied to arm64 (for-next/insn), thanks! > > [1/4] arm64: move AARCH64_BREAK_FAULT into insn-def.h > https://git.kernel.org/arm64/c/97e58e395e9c > [2/4] arm64: insn: add encoders for atomic operations > https://git.kernel.org/arm64/c/fa1114d9eba5 Daniel -- let's give this a day or so in -next, then if nothing catches fire you're more than welcome to pull this branch as a base for the rest of the series. ==================== Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220222224211.GB16976@willie-the-truck
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 5, 2022
Ido Schimmel says: ==================== ipv4: Invalidate neighbour for broadcast address upon address addition Patch #1 solves a recently reported issue [1]. See detailed description in the changelog. Patch #2 adds a matching test case. Targeting at net-next since as far as I can tell this use case never worked. There are no regressions in fib_tests.sh with this change: # ./fib_tests.sh ... Tests passed: 186 Tests failed: 0 [1] https://lore.kernel.org/netdev/55a04a8f-56f3-f73c-2aea-2195923f09d1@huawei.com/ ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 5, 2022
This patch adds workaround for PTP errata given below. 1. At the time of 1 sec rollover of nano-second counter, the nano-second counter is set to 0. However, it should be set to (existing counter_value - 10^9). This leads to an accumulating error in the timestamp value with each sec rollover. 2. Additionally, the nano-second counter currently is rolling over at 'h3B9A_C9FF. It should roll over at 'h3B9A_CA00. The workaround for issue #1 is to speed up the ptp clock by adjusting PTP_CLOCK_COMP register to the desired value to compensate for the nanoseconds lost per each second. The workaround for issue #2 is to slow down the ptp clock such that the rollover occurs at ~1sec. Signed-off-by: Naveen Mamindlapalli <naveenm@marvell.com> Signed-off-by: Sunil Kovvuri Goutham <sgoutham@marvell.com> Signed-off-by: Rakesh Babu Saladi <rsaladi2@marvell.com> Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 5, 2022
Ido Schimmel says: ==================== mlxsw: Various updates This patchset contains miscellaneous updates to mlxsw gathered over time. Patches #1-#2 fix recent regressions present in net-next. Patches #3-#11 are small cleanups performed while adding line card support in mlxsw. Patch #12 adds the SFF-8024 Identifier Value of OSFP transceiver in order to be able to dump their EEPROM contents over the ethtool IOCTL interface. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 5, 2022
Dust Li says: ==================== net/smc: some datapath performance optimizations This series tries to improve the performance of SMC in datapath. - patch #1, add sysctl interface to support tuning the behaviour of SMC in container environment. - patch #2/#3, add autocorking support which is very efficient for small messages without trade-off for latency. - patch #4, send directly on setting TCP_NODELAY, without wake up the TX worker, this make it consistent with clearing TCP_CORK. - patch #5, this correct the setting of RMB window update limit, so we don't send CDC messages to update peer's RMB window too frequently in some cases. - patch #6, implemented something like NAPI in SMC, decrease the number of hardirq when busy. - patch #7, this moves TX work doing in the BH to the user context when sock_lock is hold by user. With this patchset applied, we can get a good performance gain: - qperf tcp_bw test has shown a great improvement. Other benchmarks like 'netperf TCP_STREAM' or 'sockperf throughput' has similar result. - In my testing environment, running qperf tcp_bw and tcp_lat, SMC behaves better then TCP in most all message size. Here are some test results with the following testing command: client: smc_run taskset -c 1 qperf smc-server -oo msg_size:1:64K:*2 \ -t 30 -vu tcp_{bw|lat} server: smc_run taskset -c 1 qperf ==== Bandwidth ==== MsgSize Origin SMC TCP SMC with patches 1 0.578 MB/s 2.392 MB/s(313.57%) 2.561 MB/s(342.83%) 2 1.159 MB/s 4.780 MB/s(312.53%) 5.162 MB/s(345.46%) 4 2.283 MB/s 10.266 MB/s(349.77%) 10.122 MB/s(343.46%) 8 4.668 MB/s 19.040 MB/s(307.86%) 20.521 MB/s(339.59%) 16 9.147 MB/s 38.904 MB/s(325.31%) 40.823 MB/s(346.29%) 32 18.369 MB/s 79.587 MB/s(333.25%) 80.535 MB/s(338.42%) 64 36.562 MB/s 148.668 MB/s(306.61%) 158.170 MB/s(332.60%) 128 72.961 MB/s 274.913 MB/s(276.80%) 316.217 MB/s(333.41%) 256 144.705 MB/s 512.059 MB/s(253.86%) 626.019 MB/s(332.62%) 512 288.873 MB/s 884.977 MB/s(206.35%) 1221.596 MB/s(322.88%) 1024 574.180 MB/s 1337.736 MB/s(132.98%) 2203.156 MB/s(283.70%) 2048 1095.192 MB/s 1865.952 MB/s( 70.38%) 3036.448 MB/s(177.25%) 4096 2066.157 MB/s 2380.337 MB/s( 15.21%) 3834.271 MB/s( 85.58%) 8192 3717.198 MB/s 2733.073 MB/s(-26.47%) 4904.910 MB/s( 31.95%) 16384 4742.221 MB/s 2958.693 MB/s(-37.61%) 5220.272 MB/s( 10.08%) 32768 5349.550 MB/s 3061.285 MB/s(-42.77%) 5321.865 MB/s( -0.52%) 65536 5162.919 MB/s 3731.408 MB/s(-27.73%) 5245.021 MB/s( 1.59%) ==== Latency ==== MsgSize Origin SMC TCP SMC with patches 1 10.540 us 11.938 us( 13.26%) 10.356 us( -1.75%) 2 10.996 us 11.992 us( 9.06%) 10.073 us( -8.39%) 4 10.229 us 11.687 us( 14.25%) 9.996 us( -2.28%) 8 10.203 us 11.653 us( 14.21%) 10.063 us( -1.37%) 16 10.530 us 11.313 us( 7.44%) 10.013 us( -4.91%) 32 10.241 us 11.586 us( 13.13%) 10.081 us( -1.56%) 64 10.693 us 11.652 us( 8.97%) 9.986 us( -6.61%) 128 10.597 us 11.579 us( 9.27%) 10.262 us( -3.16%) 256 10.409 us 11.957 us( 14.87%) 10.148 us( -2.51%) 512 11.088 us 12.505 us( 12.78%) 10.206 us( -7.95%) 1024 11.240 us 12.255 us( 9.03%) 10.631 us( -5.42%) 2048 11.485 us 16.970 us( 47.76%) 10.981 us( -4.39%) 4096 12.077 us 13.948 us( 15.49%) 11.847 us( -1.90%) 8192 13.683 us 16.693 us( 22.00%) 13.336 us( -2.54%) 16384 16.470 us 23.615 us( 43.38%) 16.519 us( 0.30%) 32768 22.540 us 40.966 us( 81.75%) 22.452 us( -0.39%) 65536 34.192 us 73.003 us(113.51%) 33.916 us( -0.81%) ------------ Test environment notes: 1. Testing is run on 2 VMs within the same physical host 2. The NIC is ConnectX-4Lx, using SRIOV, and passing through 2 VFs to the 2 VMs respectively. 3. To decrease jitter, VM's vCPU are binded to each physical CPU, and those physical CPUs are all isolated using boot parameter `isolcpus=xxx` 4. The queue number are set to 1, and interrupt from the queue is binded to CPU0 in the guest ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 5, 2022
Ido Schimmel says:
====================
HW counters for soft devices
Petr says:
Offloading switch device drivers may be able to collect statistics of the
traffic taking place in the HW datapath that pertains to a certain soft
netdevice, such as a VLAN. In this patch set, add the necessary
infrastructure to allow exposing these statistics to the offloaded
netdevice in question, and add mlxsw offload.
Across HW platforms, the counter itself very likely constitutes a limited
resource, and the act of counting may have a performance impact. Therefore
this patch set makes the HW statistics collection opt-in and togglable from
userspace on a per-netdevice basis.
Additionally, HW devices may have various limiting conditions under which
they can realize the counter. Therefore it is also possible to query
whether the requested counter is realized by any driver. In TC parlance,
which is to a degree reused in this patch set, two values are recognized:
"request" tracks whether the user enabled collecting HW statistics, and
"used" tracks whether any HW statistics are actually collected.
In the past, this author has expressed the opinion that `a typical user
doing "ip -s l sh", including various scripts, wants to see the full
picture and not worry what's going on where'. While that would be nice,
unfortunately it cannot work:
- Packets that trap from the HW datapath to the SW datapath would be
double counted.
For a given netdevice, some traffic can be purely a SW artifact, and some
may flow through the HW object corresponding to the netdevice. But some
traffic can also get trapped to the SW datapath after bumping the HW
counter. It is not clear how to make sure double-counting does not occur
in the SW datapath in that case, while still making sure that possibly
divergent SW forwarding path gets bumped as appropriate.
So simply adding HW and SW stats may work roughly, most of the time, but
there are scenarios where the result is nonsensical.
- HW devices will have limitations as to what type of traffic they can
count.
In case of mlxsw, which is part of this patch set, there is no reasonable
way to count all traffic going through a certain netdevice, such as a
VLAN netdevice enslaved to a bridge. It is however very simple to count
traffic flowing through an L3 object, such as a VLAN netdevice with an IP
address.
Similarly for physical netdevices, the L3 object at which the counter is
installed is the subport carrying untagged traffic.
These are not "just counters". It is important that the user understands
what is being counted. It would be incorrect to conflate these statistics
with another existing statistics suite.
To that end, this patch set introduces a statistics suite called "L3
stats". This label should make it easy to understand what is being counted,
and to decide whether a given device can or cannot implement this suite for
some type of netdevice. At the same time, the code is written to make
future extensions easy, should a device pop up that can implement a
different flavor of statistics suite (say L2, or an address-family-specific
suite).
For example, using a work-in-progress iproute2[1], to turn on and then list
the counters on a VLAN netdevice:
# ip stats set dev swp1.200 l3_stats on
# ip stats show dev swp1.200 group offload subgroup l3_stats
56: swp1.200: group offload subgroup l3_stats on used on
RX: bytes packets errors dropped missed mcast
0 0 0 0 0 0
TX: bytes packets errors dropped carrier collsns
0 0 0 0 0 0
The patchset progresses as follows:
- Patch #1 is a cleanup.
- In patch #2, remove the assumption that all LINK_OFFLOAD_XSTATS are
dev-backed.
The only attribute defined under the nest is currently
IFLA_OFFLOAD_XSTATS_CPU_HIT. L3_STATS differs from CPU_HIT in that the
driver that supplies the statistics is not the same as the driver that
implements the netdevice. Make the code compatible with this in patch #2.
- In patch #3, add the possibility to filter inside nests.
The filter_mask field of RTM_GETSTATS header determines which
top-level attributes should be included in the netlink response. This
saves processing time by only including the bits that the user cares
about instead of always dumping everything. This is doubly important
for HW-backed statistics that would typically require a trip to the
device to fetch the stats. In this patch, the UAPI is extended to
allow filtering inside IFLA_STATS_LINK_OFFLOAD_XSTATS in particular,
but the scheme is easily extensible to other nests as well.
- In patch #4, propagate extack where we need it.
In patch #5, make it possible to propagate errors from drivers to the
user.
- In patch #6, add the in-kernel APIs for keeping track of the new stats
suite, and the notifiers that the core uses to communicate with the
drivers.
- In patch #7, add UAPI for obtaining the new stats suite.
- In patch #8, add a new UAPI message, RTM_SETSTATS, which will carry
the message to toggle the newly-added stats suite.
In patch #9, add the toggle itself.
At this point the core is ready for drivers to add support for the new
stats suite.
- In patches #10, #11 and #12, apply small tweaks to mlxsw code.
- In patch #13, add support for L3 stats, which are realized as RIF
counters.
- Finally in patch #14, a selftest is added to the net/forwarding
directory. Technically this is a HW-specific test, in that without a HW
implementing the counters, it just will not pass. But devices that
support L3 statistics at all are likely to be able to reuse this
selftest, so it seems appropriate to put it in the general forwarding
directory.
We also have a netdevsim implementation, and a corresponding selftest that
verifies specifically some of the core code. We intend to contribute these
later. Interested parties can take a look at the raw code at [2].
[1] https://github.com/pmachata/iproute2/commits/soft_counters
[2] https://github.com/pmachata/linux_mlxsw/commits/petrm_soft_counters_2
v2:
- Patch #3:
- Do not declare strict_start_type at the new policies, since they are
used with nla_parse_nested() (sans _deprecated).
- Use NLA_POLICY_NESTED to declare what the nest contents should be
- Use NLA_POLICY_MASK instead of BITFIELD32 for the filtering
attribute.
- Patch #6:
- s/monotonous/monotonic/ in commit message
- Use a newly-added struct rtnl_hw_stats64 for stats transfer
- Patch #7:
- Use a newly-added struct rtnl_hw_stats64 for stats transfer
- Patch #8:
- Do not declare strict_start_type at the new policies, since they are
used with nla_parse_nested() (sans _deprecated).
- Patch #13:
- Use a newly-added struct rtnl_hw_stats64 for stats transfer
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 5, 2022
Ido Schimmel says: ==================== selftests: mlxsw: A couple of fixes Patch #1 fixes a breakage due to a change in iproute2 output. The real problem is not iproute2, but the fact that the check was not strict enough. Fixed by using JSON output instead. Targeting at net so that the test will pass as part of old and new kernels regardless of iproute2 version. Patch #2 fixes an issue uncovered by the first one. ==================== Link: https://lore.kernel.org/r/20220302161447.217447-1-idosch@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 5, 2022
Andrii Nakryiko says: ==================== Add ability for user applications and libraries to register custom BPF program SEC() handlers. See patch #2 for examples where this is useful. Patch #1 does some preliminary refactoring to allow exponsing program init, preload, and attach callbacks as public API. It also establishes a protocol to allow optional auto-attach behavior. This will also help the case of sometimes auto-attachable uprobes. v4->v5: - API documentation improvements (Daniel); v3->v4: - init_fn -> prog_setup_fn, preload_fn -> prog_prepare_load_fn (Alexei); v2->v3: - moved callbacks and cookie into OPTS struct (Alan); - added more test scenarios (Alan); - address most of Alan's feedback, but kept API name; v1->v2: - resubmitting due to git send-email screw up. Cc: Alan Maguire <alan.maguire@oracle.com> ==================== Signed-off-by: Alexei Starovoitov <ast@kernel.org>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 18, 2022
This driver, like several others, uses a chained IRQ for each GPIO bank, and forwards .irq_set_wake to the GPIO bank's upstream IRQ. As a result, a call to irq_set_irq_wake() needs to lock both the upstream and downstream irq_desc's. Lockdep considers this to be a possible deadlock when the irq_desc's share lockdep classes, which they do by default: ============================================ WARNING: possible recursive locking detected 5.17.0-rc3-00394-gc849047c2473 #1 Not tainted -------------------------------------------- init/307 is trying to acquire lock: c2dfe27c (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0x58/0xa0 but task is already holding lock: c3c0ac7 (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0x58/0xa0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&irq_desc_lock_class); lock(&irq_desc_lock_class); *** DEADLOCK *** May be due to missing lock nesting notation 4 locks held by init/307: #0: c1f29f18 (system_transition_mutex){+.+.}-{3:3}, at: __do_sys_reboot+0x90/0x23c #1: c20f7760 (&dev->mutex){....}-{3:3}, at: device_shutdown+0xf4/0x224 #2: c2e804d8 (&dev->mutex){....}-{3:3}, at: device_shutdown+0x104/0x224 #3: c3c0ac7 (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0x58/0xa0 stack backtrace: CPU: 0 PID: 307 Comm: init Not tainted 5.17.0-rc3-00394-gc849047c2473 #1 Hardware name: Allwinner sun8i Family unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x68/0x90 dump_stack_lvl from __lock_acquire+0x1680/0x31a0 __lock_acquire from lock_acquire+0x148/0x3dc lock_acquire from _raw_spin_lock_irqsave+0x50/0x6c _raw_spin_lock_irqsave from __irq_get_desc_lock+0x58/0xa0 __irq_get_desc_lock from irq_set_irq_wake+0x2c/0x19c irq_set_irq_wake from irq_set_irq_wake+0x13c/0x19c [tail call from sunxi_pinctrl_irq_set_wake] irq_set_irq_wake from gpio_keys_suspend+0x80/0x1a4 gpio_keys_suspend from gpio_keys_shutdown+0x10/0x2c gpio_keys_shutdown from device_shutdown+0x180/0x224 device_shutdown from __do_sys_reboot+0x134/0x23c __do_sys_reboot from ret_fast_syscall+0x0/0x1c However, this can never deadlock because the upstream and downstream IRQs are never the same (nor do they even involve the same irqchip). Silence this erroneous lockdep splat by applying what appears to be the usual fix of moving the GPIO IRQs to separate lockdep classes. Fixes: a59c99d ("pinctrl: sunxi: Forward calls to irq_set_irq_wake") Reported-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Samuel Holland <samuel@sholland.org> Reviewed-by: Jernej Skrabec <jernej.skrabec@gmail.com> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20220216040037.22730-1-samuel@sholland.org Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 18, 2022
in tunnel mode, if outer interface(ipv4) is less, it is easily to let
inner IPV6 mtu be less than 1280. If so, a Packet Too Big ICMPV6 message
is received. When send again, packets are fragmentized with 1280, they
are still rejected with ICMPV6(Packet Too Big) by xfrmi_xmit2().
According to RFC4213 Section3.2.2:
if (IPv4 path MTU - 20) is less than 1280
if packet is larger than 1280 bytes
Send ICMPv6 "packet too big" with MTU=1280
Drop packet
else
Encapsulate but do not set the Don't Fragment
flag in the IPv4 header. The resulting IPv4
packet might be fragmented by the IPv4 layer
on the encapsulator or by some router along
the IPv4 path.
endif
else
if packet is larger than (IPv4 path MTU - 20)
Send ICMPv6 "packet too big" with
MTU = (IPv4 path MTU - 20).
Drop packet.
else
Encapsulate and set the Don't Fragment flag
in the IPv4 header.
endif
endif
Packets should be fragmentized with ipv4 outer interface, so change it.
After it is fragemtized with ipv4, there will be double fragmenation.
No.48 & No.51 are ipv6 fragment packets, No.48 is double fragmentized,
then tunneled with IPv4(No.49& No.50), which obey spec. And received peer
cannot decrypt it rightly.
48 2002::10 2002::11 1296(length) IPv6 fragment (off=0 more=y ident=0xa20da5bc nxt=50)
49 0x0000 (0) 2002::10 2002::11 1304 IPv6 fragment (off=0 more=y ident=0x7448042c nxt=44)
50 0x0000 (0) 2002::10 2002::11 200 ESP (SPI=0x00035000)
51 2002::10 2002::11 180 Echo (ping) request
52 0x56dc 2002::10 2002::11 248 IPv6 fragment (off=1232 more=n ident=0xa20da5bc nxt=50)
xfrm6_noneed_fragment has fixed above issues. Finally, it acted like below:
1 0x6206 192.168.1.138 192.168.1.1 1316 Fragmented IP protocol (proto=Encap Security Payload 50, off=0, ID=6206) [Reassembled in #2]
2 0x6206 2002::10 2002::11 88 IPv6 fragment (off=0 more=y ident=0x1f440778 nxt=50)
3 0x0000 2002::10 2002::11 248 ICMPv6 Echo (ping) request
Signed-off-by: Lina Wang <lina.wang@mediatek.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 23, 2022
Petr Machata says: ==================== netdevsim: Support for L3 HW stats "L3 stats" is a suite of interface statistics aimed at reflecting traffic taking place in a HW device, on an object corresponding to some software netdevice. Support for this stats suite has been added recently, in commit ca0a53d ("Merge branch 'net-hw-counters-for-soft-devices'"). In this patch set: - Patch #1 adds support for L3 stats to netdevsim. Real devices can have various conditions for when an L3 counter is available. To simulate this, netdevsim maintains a list of devices suitable for HW stats collection. Only when l3_stats is enabled on both a netdevice itself, and in netdevsim, will netdevsim contribute values to L3 stats. This enablement and disablement is done via debugfs: # echo $ifindex > /sys/kernel/debug/netdevsim/$DEV/hwstats/l3/enable_ifindex # echo $ifindex > /sys/kernel/debug/netdevsim/$DEV/hwstats/l3/disable_ifindex Besides this, there is a third toggle to mark a device for future failure: # echo $ifindex > /sys/kernel/debug/netdevsim/$DEV/hwstats/l3/fail_next_enable - This allows HW-independent testing of stats reporting and in-kernel APIs, as well as a test for enablement rollback, which is difficult to do otherwise. This netdevsim-specific selftest is added in patch #2. - Patch #3 adds another driver-specific selftest, namely a test aimed at checking mlxsw-induced stats monitoring events. ==================== Link: https://lore.kernel.org/r/cover.1647265833.git.petrm@nvidia.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 24, 2022
…k_under_node() Patch series "drivers/base/memory: determine and store zone for single-zone memory blocks", v2. I remember talking to Michal in the past about removing test_pages_in_a_zone(), which we use for: * verifying that a memory block we intend to offline is really only managed by a single zone. We don't support offlining of memory blocks that are managed by multiple zones (e.g., multiple nodes, DMA and DMA32) * exposing that zone to user space via /sys/devices/system/memory/memory*/valid_zones Now that I identified some more cases where test_pages_in_a_zone() might go wrong, and we received an UBSAN report (see patch #3), let's get rid of this PFN walker. So instead of detecting the zone at runtime with test_pages_in_a_zone() by scanning the memmap, let's determine and remember for each memory block if it's managed by a single zone. The stored zone can then be used for the above two cases, avoiding a manual lookup using test_pages_in_a_zone(). This avoids eventually stumbling over uninitialized memmaps in corner cases, especially when ZONE_DEVICE ranges partly fall into memory block (that are responsible for managing System RAM). Handling memory onlining is easy, because we online to exactly one zone. Handling boot memory is more tricky, because we want to avoid scanning all zones of all nodes to detect possible zones that overlap with the physical memory region of interest. Fortunately, we already have code that determines the applicable nodes for a memory block, to create sysfs links -- we'll hook into that. Patch #1 is a simple cleanup I had laying around for a longer time. Patch #2 contains the main logic to remove test_pages_in_a_zone() and further details. [1] https://lkml.kernel.org/r/20220128144540.153902-1-david@redhat.com [2] https://lkml.kernel.org/r/20220203105212.30385-1-david@redhat.com This patch (of 2): Let's adjust the stale terminology, making it match unregister_memory_block_under_nodes() and do_register_memory_block_under_node(). We're dealing with memory block devices, which span 1..X memory sections. Link: https://lkml.kernel.org/r/20220210184359.235565-1-david@redhat.com Link: https://lkml.kernel.org/r/20220210184359.235565-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Oscar Salvador <osalvador@suse.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rafael Parra <rparrazo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 29, 2022
A missing bounds check in vm_access() can lead to an out-of-bounds read or write in the adjacent memory area, since the len attribute is not validated before the memcpy later in the function, potentially hitting: [ 183.637831] BUG: unable to handle page fault for address: ffffc90000c86000 [ 183.637934] #PF: supervisor read access in kernel mode [ 183.637997] #PF: error_code(0x0000) - not-present page [ 183.638059] PGD 100000067 P4D 100000067 PUD 100258067 PMD 106341067 PTE 0 [ 183.638144] Oops: 0000 [#2] PREEMPT SMP NOPTI [ 183.638201] CPU: 3 PID: 1790 Comm: poc Tainted: G D 5.17.0-rc6-ci-drm-11296+ #1 [ 183.638298] Hardware name: Intel Corporation CoffeeLake Client Platform/CoffeeLake H DDR4 RVP, BIOS CNLSFWR1.R00.X208.B00.1905301319 05/30/2019 [ 183.638430] RIP: 0010:memcpy_erms+0x6/0x10 [ 183.640213] RSP: 0018:ffffc90001763d48 EFLAGS: 00010246 [ 183.641117] RAX: ffff888109c14000 RBX: ffff888111bece40 RCX: 0000000000000ffc [ 183.642029] RDX: 0000000000001000 RSI: ffffc90000c86000 RDI: ffff888109c14004 [ 183.642946] RBP: 0000000000000ffc R08: 800000000000016b R09: 0000000000000000 [ 183.643848] R10: ffffc90000c85000 R11: 0000000000000048 R12: 0000000000001000 [ 183.644742] R13: ffff888111bed190 R14: ffff888109c14000 R15: 0000000000001000 [ 183.645653] FS: 00007fe5ef807540(0000) GS:ffff88845b380000(0000) knlGS:0000000000000000 [ 183.646570] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 183.647481] CR2: ffffc90000c86000 CR3: 000000010ff02006 CR4: 00000000003706e0 [ 183.648384] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 183.649271] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 183.650142] Call Trace: [ 183.650988] <TASK> [ 183.651793] vm_access+0x1f0/0x2a0 [i915] [ 183.652726] __access_remote_vm+0x224/0x380 [ 183.653561] mem_rw.isra.0+0xf9/0x190 [ 183.654402] vfs_read+0x9d/0x1b0 [ 183.655238] ksys_read+0x63/0xe0 [ 183.656065] do_syscall_64+0x38/0xc0 [ 183.656882] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 183.657663] RIP: 0033:0x7fe5ef725142 [ 183.659351] RSP: 002b:00007ffe1e81c7e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 [ 183.660227] RAX: ffffffffffffffda RBX: 0000557055dfb780 RCX: 00007fe5ef725142 [ 183.661104] RDX: 0000000000001000 RSI: 00007ffe1e81d880 RDI: 0000000000000005 [ 183.661972] RBP: 00007ffe1e81e890 R08: 0000000000000030 R09: 0000000000000046 [ 183.662832] R10: 0000557055dfc2e0 R11: 0000000000000246 R12: 0000557055dfb1c0 [ 183.663691] R13: 00007ffe1e81e980 R14: 0000000000000000 R15: 0000000000000000 Changes since v1: - Updated if condition with range_overflows_t [Chris Wilson] Fixes: 9f909e2 ("drm/i915: Implement vm_ops->access for gdb access into mmaps") Signed-off-by: Mastan Katragadda <mastanx.katragadda@intel.com> Suggested-by: Adam Zabrocki <adamza@microsoft.com> Reported-by: Jackson Cody <cody.jackson@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jon Bloomfield <jon.bloomfield@intel.com> Cc: Sudeep Dutt <sudeep.dutt@intel.com> Cc: <stable@vger.kernel.org> # v5.8+ Reviewed-by: Matthew Auld <matthew.auld@intel.com> [mauld: tidy up the commit message and add Cc: stable] Signed-off-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220303060428.1668844-1-mastanx.katragadda@intel.com (cherry picked from commit 661412e) Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 29, 2022
In remove_phb_dynamic() we use &phb->io_resource, after we've called device_unregister(&host_bridge->dev). But the unregister may have freed phb, because pcibios_free_controller_deferred() is the release function for the host_bridge. If there are no outstanding references when we call device_unregister() then phb will be freed out from under us. This has gone mainly unnoticed, but with slub_debug and page_poison enabled it can lead to a crash: PID: 7574 TASK: c0000000d492cb80 CPU: 13 COMMAND: "drmgr" #0 [c0000000e4f075a0] crash_kexec at c00000000027d7dc #1 [c0000000e4f075d0] oops_end at c000000000029608 #2 [c0000000e4f07650] __bad_page_fault at c0000000000904b4 #3 [c0000000e4f076c0] do_bad_slb_fault at c00000000009a5a8 #4 [c0000000e4f076f0] data_access_slb_common_virt at c000000000008b30 Data SLB Access [380] exception frame: R0: c000000000167250 R1: c0000000e4f07a00 R2: c000000002a46100 R3: c000000002b39ce8 R4: 00000000000000c0 R5: 00000000000000a9 R6: 3894674d000000c0 R7: 0000000000000000 R8: 00000000000000ff R9: 0000000000000100 R10: 6b6b6b6b6b6b6b6b R11: 0000000000008000 R12: c00000000023da80 R13: c0000009ffd38b00 R14: 0000000000000000 R15: 000000011c87f0f0 R16: 0000000000000006 R17: 0000000000000003 R18: 0000000000000002 R19: 0000000000000004 R20: 0000000000000005 R21: 000000011c87ede8 R22: 000000011c87c5a8 R23: 000000011c87d3a0 R24: 0000000000000000 R25: 0000000000000001 R26: c0000000e4f07cc8 R27: c00000004d1cc400 R28: c0080000031d00e8 R29: c00000004d23d800 R30: c00000004d1d2400 R31: c00000004d1d2540 NIP: c000000000167258 MSR: 8000000000009033 OR3: c000000000e9f474 CTR: 0000000000000000 LR: c000000000167250 XER: 0000000020040003 CCR: 0000000024088420 MQ: 0000000000000000 DAR: 6b6b6b6b6b6b6ba3 DSISR: c0000000e4f07920 Syscall Result: fffffffffffffff2 [NIP : release_resource+56] [LR : release_resource+48] #5 [c0000000e4f07a00] release_resource at c000000000167258 (unreliable) #6 [c0000000e4f07a30] remove_phb_dynamic at c000000000105648 #7 [c0000000e4f07ab0] dlpar_remove_slot at c0080000031a09e8 [rpadlpar_io] #8 [c0000000e4f07b50] remove_slot_store at c0080000031a0b9c [rpadlpar_io] #9 [c0000000e4f07be0] kobj_attr_store at c000000000817d8c #10 [c0000000e4f07c00] sysfs_kf_write at c00000000063e504 #11 [c0000000e4f07c20] kernfs_fop_write_iter at c00000000063d868 #12 [c0000000e4f07c70] new_sync_write at c00000000054339c #13 [c0000000e4f07d10] vfs_write at c000000000546624 #14 [c0000000e4f07d60] ksys_write at c0000000005469f4 #15 [c0000000e4f07db0] system_call_exception at c000000000030840 #16 [c0000000e4f07e10] system_call_vectored_common at c00000000000c168 To avoid it, we can take a reference to the host_bridge->dev until we're done using phb. Then when we drop the reference the phb will be freed. Fixes: 2dd9c11 ("powerpc/pseries: use pci_host_bridge.release_fn() to kfree(phb)") Reported-by: David Dai <zdai@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Sachin Sant <sachinp@linux.ibm.com> Link: https://lore.kernel.org/r/20220318034219.1188008-1-mpe@ellerman.id.au
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 29, 2022
The res is initialized here only if there's no errors so passing it to ttm_resource_fini in the error paths results in a kernel oops. In the error paths, instead of the unitialized res, we have to use to use node->base on which ttm_resource_init was called. Sample affected backtrace: Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d8 Mem abort info: ESR = 0x96000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000000106ac0000 [00000000000000d8] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] SMP Modules linked in: bnep vsock_loopback vmw_vsock_virtio_transport_common vsock snd_hda_codec_generic snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hwdep > CPU: 0 PID: 1197 Comm: gnome-shell Tainted: G U 5.17.0-rc2-vmwgfx #2 Hardware name: VMware, Inc. VBSA/VBSA, BIOS VEFI 12/31/2020 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ttm_resource_fini+0x5c/0xac [ttm] lr : ttm_range_man_alloc+0x128/0x1e0 [ttm] sp : ffff80000d783510 x29: ffff80000d783510 x28: 0000000000000000 x27: ffff000086514400 x26: 0000000000000300 x25: ffff0000809f9e78 x24: 0000000000000000 x23: ffff80000d783680 x22: ffff000086514400 x21: 00000000ffffffe4 x20: ffff80000d7836a0 x19: ffff0000809f9e00 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000800 x12: ffff0000f2600a00 x11: 000000000000fc96 x10: 0000000000000000 x9 : ffff800001295c18 x8 : 0000000000000000 x7 : 0000000000000300 x6 : 0000000000000000 x5 : 0000000000000000 x4 : ffff0000f1034e20 x3 : ffff0000f1034600 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000600000 Call trace: ttm_resource_fini+0x5c/0xac [ttm] ttm_range_man_alloc+0x128/0x1e0 [ttm] ttm_resource_alloc+0x58/0x90 [ttm] ttm_bo_mem_space+0xc8/0x3e4 [ttm] ttm_bo_validate+0xb4/0x134 [ttm] vmw_bo_pin_in_start_of_vram+0xbc/0x200 [vmwgfx] vmw_framebuffer_pin+0xc0/0x154 [vmwgfx] vmw_ldu_primary_plane_atomic_update+0x8c/0x6e0 [vmwgfx] drm_atomic_helper_commit_planes+0x11c/0x2e0 drm_atomic_helper_commit_tail+0x60/0xb0 commit_tail+0x1b0/0x210 drm_atomic_helper_commit+0x168/0x400 drm_atomic_commit+0x64/0x74 drm_atomic_helper_set_config+0xdc/0x11c drm_mode_setcrtc+0x1c4/0x780 drm_ioctl_kernel+0xd0/0x1a0 drm_ioctl+0x2c4/0x690 vmw_generic_ioctl+0xe0/0x174 [vmwgfx] vmw_unlocked_ioctl+0x24/0x30 [vmwgfx] __arm64_sys_ioctl+0xb4/0x100 invoke_syscall+0x78/0x100 el0_svc_common.constprop.0+0x54/0x184 do_el0_svc+0x34/0x9c el0_svc+0x48/0x1b0 el0t_64_sync_handler+0xa4/0x130 el0t_64_sync+0x1a4/0x1a8 Code: 35000260 f9401a81 52800002 f9403a60 (f9406c23) ---[ end trace 0000000000000000 ]--- Signed-off-by: Zack Rusin <zackr@vmware.com> Fixes: de3688e ("drm/ttm: add ttm_resource_fini v2") Cc: Christian König <christian.koenig@amd.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Martin Krastev <krastevm@vmware.com> Reviewed-by: Christian König <christian.koenig@amd.com> Signed-off-by: Christian König <christian.koenig@amd.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220318174332.440068-6-zack@kde.org
kernel-patches-bot
pushed a commit
that referenced
this pull request
Mar 31, 2022
The per-channel data is available directly in the driver data struct. So
use it without making use of pwm_[gs]et_chip_data().
The relevant change introduced by this patch to lpc18xx_pwm_disable() at
the assembler level (for an arm lpc18xx_defconfig build) is:
push {r3, r4, r5, lr}
mov r4, r0
mov r0, r1
mov r5, r1
bl 0 <pwm_get_chip_data>
ldr r3, [r0, #0]
changes to
ldr r3, [r1, #8]
push {r4, lr}
add.w r3, r0, r3, lsl #2
ldr r3, [r3, #92] ; 0x5c
So this reduces stack usage, has an improved runtime behavior because of
better pipeline usage, doesn't branch to an external function and the
generated code is a bit smaller occupying less memory.
The codesize of lpc18xx_pwm_probe() is reduced by 32 bytes.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
kernel-patches-bot
pushed a commit
that referenced
this pull request
Apr 5, 2022
There are some issues in parse_num_list(): First, the end variable is assigned twice when parsing_end is true, it is unnecessary. Second, the function does not check that parsing_end is false after parsing argument. Thus, if the final part of the argument is something like '4-', parse_num_list() will discard it instead of returning -EINVAL. Clean up parse_num_list() and fix these issues. Before: $ ./test_progs -n 2,4- #2 atomic_bounds:OK Summary: 1/0 PASSED, 0 SKIPPED, 0 FAILED After: $ ./test_progs -n 2,4- Failed to parse test numbers. Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 11, 2025
Ido Schimmel says:
====================
vxlan: Fix NPDs when using nexthop objects
With FDB nexthop groups, VXLAN FDB entries do not necessarily point to
a remote destination but rather to an FDB nexthop group. This means that
first_remote_{rcu,rtnl}() can return NULL and a few places in the driver
were not ready for that, resulting in NULL pointer dereferences.
Patches #1-#2 fix these NPDs.
Note that vxlan_fdb_find_uc() still dereferences the remote returned by
first_remote_rcu() without checking that it is not NULL, but this
function is only invoked by a single driver which vetoes the creation of
FDB nexthop groups. I will patch this in net-next to make the code less
fragile.
Patch #3 adds a selftests which exercises these code paths and tests
basic Tx functionality with FDB nexthop groups. I verified that the test
crashes the kernel without the first two patches.
====================
Link: https://patch.msgid.link/20250901065035.159644-1-idosch@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 11, 2025
When transmitting a PTP frame which is timestamp using 2 step, the following warning appears if CONFIG_PROVE_LOCKING is enabled: ============================= [ BUG: Invalid wait context ] 6.17.0-rc1-00326-ge6160462704e #427 Not tainted ----------------------------- ptp4l/119 is trying to lock: c2a44ed4 (&vsc8531->ts_lock){+.+.}-{3:3}, at: vsc85xx_txtstamp+0x50/0xac other info that might help us debug this: context-{4:4} 4 locks held by ptp4l/119: #0: c145f068 (rcu_read_lock_bh){....}-{1:2}, at: __dev_queue_xmit+0x58/0x1440 #1: c29df974 (dev->qdisc_tx_busylock ?: &qdisc_tx_busylock){+...}-{2:2}, at: __dev_queue_xmit+0x5c4/0x1440 #2: c2aaaad0 (_xmit_ETHER#2){+.-.}-{2:2}, at: sch_direct_xmit+0x108/0x350 #3: c2aac170 (&lan966x->tx_lock){+.-.}-{2:2}, at: lan966x_port_xmit+0xd0/0x350 stack backtrace: CPU: 0 UID: 0 PID: 119 Comm: ptp4l Not tainted 6.17.0-rc1-00326-ge6160462704e #427 NONE Hardware name: Generic DT based system Call trace: unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x7c/0xac dump_stack_lvl from __lock_acquire+0x8e8/0x29dc __lock_acquire from lock_acquire+0x108/0x38c lock_acquire from __mutex_lock+0xb0/0xe78 __mutex_lock from mutex_lock_nested+0x1c/0x24 mutex_lock_nested from vsc85xx_txtstamp+0x50/0xac vsc85xx_txtstamp from lan966x_fdma_xmit+0xd8/0x3a8 lan966x_fdma_xmit from lan966x_port_xmit+0x1bc/0x350 lan966x_port_xmit from dev_hard_start_xmit+0xc8/0x2c0 dev_hard_start_xmit from sch_direct_xmit+0x8c/0x350 sch_direct_xmit from __dev_queue_xmit+0x680/0x1440 __dev_queue_xmit from packet_sendmsg+0xfa4/0x1568 packet_sendmsg from __sys_sendto+0x110/0x19c __sys_sendto from sys_send+0x18/0x20 sys_send from ret_fast_syscall+0x0/0x1c Exception stack(0xf0b05fa8 to 0xf0b05ff0) 5fa0: 00000001 0000000e 0000000e 0004b47a 0000003a 00000000 5fc0: 00000001 0000000e 00000000 00000121 0004af58 00044874 00000000 00000000 5fe0: 00000001 bee9d420 00025a10 b6e75c7c So, instead of using the ts_lock for tx_queue, use the spinlock that skb_buff_head has. Reviewed-by: Vadim Fedorenko <vadim.fedorenko@linux.dev> Fixes: 7d272e6 ("net: phy: mscc: timestamping and PHC support") Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Link: https://patch.msgid.link/20250902121259.3257536-1-horatiu.vultur@microchip.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 11, 2025
The commit ced17ee ("Revert "virtio: reject shm region if length is zero"") exposes the following DAX page fault bug (this fix the failure that getting shm region alway returns false because of zero length): The commit 21aa65b ("mm: remove callers of pfn_t functionality") handles the DAX physical page address incorrectly: the removed macro 'phys_to_pfn_t()' should be replaced with 'PHYS_PFN()'. [ 1.390321] BUG: unable to handle page fault for address: ffffd3fb40000008 [ 1.390875] #PF: supervisor read access in kernel mode [ 1.391257] #PF: error_code(0x0000) - not-present page [ 1.391509] PGD 0 P4D 0 [ 1.391626] Oops: Oops: 0000 [#1] SMP NOPTI [ 1.391806] CPU: 6 UID: 1000 PID: 162 Comm: weston Not tainted 6.17.0-rc3-WSL2-STABLE #2 PREEMPT(none) [ 1.392361] RIP: 0010:dax_to_folio+0x14/0x60 [ 1.392653] Code: 52 c9 c3 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 48 c1 ef 05 48 c1 e7 06 48 03 3d 34 b5 31 01 <48> 8b 57 08 48 89 f8 f6 c2 01 75 2b 66 90 c3 cc cc cc cc f7 c7 ff [ 1.393727] RSP: 0000:ffffaf7d04407aa8 EFLAGS: 00010086 [ 1.394003] RAX: 000000a000000000 RBX: ffffaf7d04407bb0 RCX: 0000000000000000 [ 1.394524] RDX: ffffd17b40000008 RSI: 0000000000000083 RDI: ffffd3fb40000000 [ 1.394967] RBP: 0000000000000011 R08: 000000a000000000 R09: 0000000000000000 [ 1.395400] R10: 0000000000001000 R11: ffffaf7d04407c10 R12: 0000000000000000 [ 1.395806] R13: ffffa020557be9c0 R14: 0000014000000001 R15: 0000725970e94000 [ 1.396268] FS: 000072596d6d2ec0(0000) GS:ffffa0222dc59000(0000) knlGS:0000000000000000 [ 1.396715] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1.397100] CR2: ffffd3fb40000008 CR3: 000000011579c005 CR4: 0000000000372ef0 [ 1.397518] Call Trace: [ 1.397663] <TASK> [ 1.397900] dax_insert_entry+0x13b/0x390 [ 1.398179] dax_fault_iter+0x2a5/0x6c0 [ 1.398443] dax_iomap_pte_fault+0x193/0x3c0 [ 1.398750] __fuse_dax_fault+0x8b/0x270 [ 1.398997] ? vm_mmap_pgoff+0x161/0x210 [ 1.399175] __do_fault+0x30/0x180 [ 1.399360] do_fault+0xc4/0x550 [ 1.399547] __handle_mm_fault+0x8e3/0xf50 [ 1.399731] ? do_syscall_64+0x72/0x1e0 [ 1.399958] handle_mm_fault+0x192/0x2f0 [ 1.400204] do_user_addr_fault+0x20e/0x700 [ 1.400418] exc_page_fault+0x66/0x150 [ 1.400602] asm_exc_page_fault+0x26/0x30 [ 1.400831] RIP: 0033:0x72596d1bf703 [ 1.401076] Code: 31 f6 45 31 e4 48 8d 15 b3 73 00 00 e8 06 03 00 00 8b 83 68 01 00 00 e9 8e fa ff ff 0f 1f 00 48 8b 44 24 08 4c 89 ee 48 89 df <c7> 00 21 43 34 12 e8 72 09 00 00 e9 6a fa ff ff 0f 1f 44 00 00 e8 [ 1.402172] RSP: 002b:00007ffc350f6dc0 EFLAGS: 00010202 [ 1.402488] RAX: 0000725970e94000 RBX: 00005b7c642c2560 RCX: 0000725970d359a7 [ 1.402898] RDX: 0000000000000003 RSI: 00007ffc350f6dc0 RDI: 00005b7c642c2560 [ 1.403284] RBP: 00007ffc350f6e90 R08: 000000000000000d R09: 0000000000000000 [ 1.403634] R10: 00007ffc350f6dd8 R11: 0000000000000246 R12: 0000000000000001 [ 1.404078] R13: 00007ffc350f6dc0 R14: 0000725970e29ce0 R15: 0000000000000003 [ 1.404450] </TASK> [ 1.404570] Modules linked in: [ 1.404821] CR2: ffffd3fb40000008 [ 1.405029] ---[ end trace 0000000000000000 ]--- [ 1.405323] RIP: 0010:dax_to_folio+0x14/0x60 [ 1.405556] Code: 52 c9 c3 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 48 c1 ef 05 48 c1 e7 06 48 03 3d 34 b5 31 01 <48> 8b 57 08 48 89 f8 f6 c2 01 75 2b 66 90 c3 cc cc cc cc f7 c7 ff [ 1.406639] RSP: 0000:ffffaf7d04407aa8 EFLAGS: 00010086 [ 1.406910] RAX: 000000a000000000 RBX: ffffaf7d04407bb0 RCX: 0000000000000000 [ 1.407379] RDX: ffffd17b40000008 RSI: 0000000000000083 RDI: ffffd3fb40000000 [ 1.407800] RBP: 0000000000000011 R08: 000000a000000000 R09: 0000000000000000 [ 1.408246] R10: 0000000000001000 R11: ffffaf7d04407c10 R12: 0000000000000000 [ 1.408666] R13: ffffa020557be9c0 R14: 0000014000000001 R15: 0000725970e94000 [ 1.409170] FS: 000072596d6d2ec0(0000) GS:ffffa0222dc59000(0000) knlGS:0000000000000000 [ 1.409608] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1.409977] CR2: ffffd3fb40000008 CR3: 000000011579c005 CR4: 0000000000372ef0 [ 1.410437] Kernel panic - not syncing: Fatal exception [ 1.410857] Kernel Offset: 0xc000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) Fixes: 21aa65b ("mm: remove callers of pfn_t functionality") Signed-off-by: Haiyue Wang <haiyuewa@163.com> Link: https://lore.kernel.org/20250904120339.972-1-haiyuewa@163.com Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 12, 2025
Problem description
===================
Lockdep reports a possible circular locking dependency (AB/BA) between
&pl->state_mutex and &phy->lock, as follows.
phylink_resolve() // acquires &pl->state_mutex
-> phylink_major_config()
-> phy_config_inband() // acquires &pl->phydev->lock
whereas all the other call sites where &pl->state_mutex and
&pl->phydev->lock have the locking scheme reversed. Everywhere else,
&pl->phydev->lock is acquired at the top level, and &pl->state_mutex at
the lower level. A clear example is phylink_bringup_phy().
The outlier is the newly introduced phy_config_inband() and the existing
lock order is the correct one. To understand why it cannot be the other
way around, it is sufficient to consider phylink_phy_change(), phylink's
callback from the PHY device's phy->phy_link_change() virtual method,
invoked by the PHY state machine.
phy_link_up() and phy_link_down(), the (indirect) callers of
phylink_phy_change(), are called with &phydev->lock acquired.
Then phylink_phy_change() acquires its own &pl->state_mutex, to
serialize changes made to its pl->phy_state and pl->link_config.
So all other instances of &pl->state_mutex and &phydev->lock must be
consistent with this order.
Problem impact
==============
I think the kernel runs a serious deadlock risk if an existing
phylink_resolve() thread, which results in a phy_config_inband() call,
is concurrent with a phy_link_up() or phy_link_down() call, which will
deadlock on &pl->state_mutex in phylink_phy_change(). Practically
speaking, the impact may be limited by the slow speed of the medium
auto-negotiation protocol, which makes it unlikely for the current state
to still be unresolved when a new one is detected, but I think the
problem is there. Nonetheless, the problem was discovered using lockdep.
Proposed solution
=================
Practically speaking, the phy_config_inband() requirement of having
phydev->lock acquired must transfer to the caller (phylink is the only
caller). There, it must bubble up until immediately before
&pl->state_mutex is acquired, for the cases where that takes place.
Solution details, considerations, notes
=======================================
This is the phy_config_inband() call graph:
sfp_upstream_ops :: connect_phy()
|
v
phylink_sfp_connect_phy()
|
v
phylink_sfp_config_phy()
|
| sfp_upstream_ops :: module_insert()
| |
| v
| phylink_sfp_module_insert()
| |
| | sfp_upstream_ops :: module_start()
| | |
| | v
| | phylink_sfp_module_start()
| | |
| v v
| phylink_sfp_config_optical()
phylink_start() | |
| phylink_resume() v v
| | phylink_sfp_set_config()
| | |
v v v
phylink_mac_initial_config()
| phylink_resolve()
| | phylink_ethtool_ksettings_set()
v v v
phylink_major_config()
|
v
phy_config_inband()
phylink_major_config() caller #1, phylink_mac_initial_config(), does not
acquire &pl->state_mutex nor do its callers. It must acquire
&pl->phydev->lock prior to calling phylink_major_config().
phylink_major_config() caller #2, phylink_resolve() acquires
&pl->state_mutex, thus also needs to acquire &pl->phydev->lock.
phylink_major_config() caller #3, phylink_ethtool_ksettings_set(), is
completely uninteresting, because it only calls phylink_major_config()
if pl->phydev is NULL (otherwise it calls phy_ethtool_ksettings_set()).
We need to change nothing there.
Other solutions
===============
The lock inversion between &pl->state_mutex and &pl->phydev->lock has
occurred at least once before, as seen in commit c718af2 ("net:
phylink: fix ethtool -A with attached PHYs"). The solution there was to
simply not call phy_set_asym_pause() under the &pl->state_mutex. That
cannot be extended to our case though, where the phy_config_inband()
call is much deeper inside the &pl->state_mutex section.
Fixes: 5fd0f1a ("net: phylink: add negotiation of in-band capabilities")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Link: https://patch.msgid.link/20250904125238.193990-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 12, 2025
5da3d94 ("PCI: mvebu: Use for_each_of_range() iterator for parsing "ranges"") simplified code by using the for_each_of_range() iterator, but it broke PCI enumeration on Turris Omnia (and probably other mvebu targets). Issue #1: To determine range.flags, of_pci_range_parser_one() uses bus->get_flags(), which resolves to of_bus_pci_get_flags(), which already returns an IORESOURCE bit field, and NOT the original flags from the "ranges" resource. Then mvebu_get_tgt_attr() attempts the very same conversion again. Remove the misinterpretation of range.flags in mvebu_get_tgt_attr(), to restore the intended behavior. Issue #2: The driver needs target and attributes, which are encoded in the raw address values of the "/soc/pcie/ranges" resource. According to of_pci_range_parser_one(), the raw values are stored in range.bus_addr and range.parent_bus_addr, respectively. range.cpu_addr is a translated version of range.parent_bus_addr, and not relevant here. Use the correct range structure member, to extract target and attributes. This restores the intended behavior. Fixes: 5da3d94 ("PCI: mvebu: Use for_each_of_range() iterator for parsing "ranges"") Reported-by: Jan Palus <jpalus@fastmail.com> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=220479 Signed-off-by: Klaus Kudielka <klaus.kudielka@gmail.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Tested-by: Tony Dinh <mibodhi@gmail.com> Tested-by: Jan Palus <jpalus@fastmail.com> Link: https://patch.msgid.link/20250907102303.29735-1-klaus.kudielka@gmail.com
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 23, 2025
Leon Hwang says: ==================== bpf: Allow union argument in trampoline based programs While tracing 'release_pages' with bpfsnoop[0], the verifier reports: The function release_pages arg0 type UNION is unsupported. However, it should be acceptable to trace functions that have 'union' arguments. This patch set enables such support in the verifier by allowing 'union' as a valid argument type. Changes: v3 -> v4: * Address comments from Alexei: * Trim bpftrace output in patch #1 log. * Drop the referenced commit info and the test output in patch #2 log. v2 -> v3: * Address comments from Alexei: * Reuse the existing flag BTF_FMODEL_STRUCT_ARG. * Update the comment of the flag BTF_FMODEL_STRUCT_ARG. v1 -> v2: * Add 16B 'union' argument support in x86_64 trampoline. * Update selftests using bpf_testmod. * Add test case about 16-bytes 'union' argument. * Address comments from Alexei: * Study the patch set about 'struct' argument support. * Update selftests to cover more cases. v1: https://lore.kernel.org/bpf/20250905133226.84675-1-leon.hwang@linux.dev/ Links: [0] https://github.com/bpfsnoop/bpfsnoop ==================== Link: https://patch.msgid.link/20250919044110.23729-1-leon.hwang@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 24, 2025
…ostcopy When you run a KVM guest with vhost-net and migrate that guest to another host, and you immediately enable postcopy after starting the migration, there is a big chance that the network connection of the guest won't work anymore on the destination side after the migration. With a debug kernel v6.16.0, there is also a call trace that looks like this: FAULT_FLAG_ALLOW_RETRY missing 881 CPU: 6 UID: 0 PID: 549 Comm: kworker/6:2 Kdump: loaded Not tainted 6.16.0 #56 NONE Hardware name: IBM 3931 LA1 400 (LPAR) Workqueue: events irqfd_inject [kvm] Call Trace: [<00003173cbecc634>] dump_stack_lvl+0x104/0x168 [<00003173cca69588>] handle_userfault+0xde8/0x1310 [<00003173cc756f0c>] handle_pte_fault+0x4fc/0x760 [<00003173cc759212>] __handle_mm_fault+0x452/0xa00 [<00003173cc7599ba>] handle_mm_fault+0x1fa/0x6a0 [<00003173cc73409a>] __get_user_pages+0x4aa/0xba0 [<00003173cc7349e8>] get_user_pages_remote+0x258/0x770 [<000031734be6f052>] get_map_page+0xe2/0x190 [kvm] [<000031734be6f910>] adapter_indicators_set+0x50/0x4a0 [kvm] [<000031734be7f674>] set_adapter_int+0xc4/0x170 [kvm] [<000031734be2f268>] kvm_set_irq+0x228/0x3f0 [kvm] [<000031734be27000>] irqfd_inject+0xd0/0x150 [kvm] [<00003173cc00c9ec>] process_one_work+0x87c/0x1490 [<00003173cc00dda6>] worker_thread+0x7a6/0x1010 [<00003173cc02dc36>] kthread+0x3b6/0x710 [<00003173cbed2f0c>] __ret_from_fork+0xdc/0x7f0 [<00003173cdd737ca>] ret_from_fork+0xa/0x30 3 locks held by kworker/6:2/549: #0: 00000000800bc958 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x7ee/0x1490 #1: 000030f3d527fbd0 ((work_completion)(&irqfd->inject)){+.+.}-{0:0}, at: process_one_work+0x81c/0x1490 #2: 00000000f99862b0 (&mm->mmap_lock){++++}-{3:3}, at: get_map_page+0xa8/0x190 [kvm] The "FAULT_FLAG_ALLOW_RETRY missing" indicates that handle_userfaultfd() saw a page fault request without ALLOW_RETRY flag set, hence userfaultfd cannot remotely resolve it (because the caller was asking for an immediate resolution, aka, FAULT_FLAG_NOWAIT, while remote faults can take time). With that, get_map_page() failed and the irq was lost. We should not be strictly in an atomic environment here and the worker should be sleepable (the call is done during an ioctl from userspace), so we can allow adapter_indicators_set() to just sleep waiting for the remote fault instead. Link: https://issues.redhat.com/browse/RHEL-42486 Signed-off-by: Peter Xu <peterx@redhat.com> [thuth: Assembled patch description and fixed some cosmetical issues] Signed-off-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Acked-by: Janosch Frank <frankja@linux.ibm.com> Fixes: f654706 ("KVM: s390/interrupt: do not pin adapter interrupt pages") [frankja: Added fixes tag] Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 24, 2025
syzkaller has caught us red-handed once more, this time nesting regular
spinlocks behind raw spinlocks:
=============================
[ BUG: Invalid wait context ]
6.16.0-rc3-syzkaller-g7b8346bd9fce #0 Not tainted
-----------------------------
syz.0.29/3743 is trying to lock:
a3ff80008e2e9e18 (&xa->xa_lock#20){....}-{3:3}, at: vgic_put_irq+0xb4/0x190 arch/arm64/kvm/vgic/vgic.c:137
other info that might help us debug this:
context-{5:5}
3 locks held by syz.0.29/3743:
#0: a3ff80008e2e90a8 (&kvm->slots_lock){+.+.}-{4:4}, at: kvm_vgic_destroy+0x50/0x624 arch/arm64/kvm/vgic/vgic-init.c:499
#1: a3ff80008e2e9fa0 (&kvm->arch.config_lock){+.+.}-{4:4}, at: kvm_vgic_destroy+0x5c/0x624 arch/arm64/kvm/vgic/vgic-init.c:500
#2: 58f0000021be1428 (&vgic_cpu->ap_list_lock){....}-{2:2}, at: vgic_flush_pending_lpis+0x3c/0x31c arch/arm64/kvm/vgic/vgic.c:150
stack backtrace:
CPU: 0 UID: 0 PID: 3743 Comm: syz.0.29 Not tainted 6.16.0-rc3-syzkaller-g7b8346bd9fce #0 PREEMPT
Hardware name: linux,dummy-virt (DT)
Call trace:
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:466 (C)
__dump_stack+0x30/0x40 lib/dump_stack.c:94
dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120
dump_stack+0x1c/0x28 lib/dump_stack.c:129
print_lock_invalid_wait_context kernel/locking/lockdep.c:4833 [inline]
check_wait_context kernel/locking/lockdep.c:4905 [inline]
__lock_acquire+0x978/0x299c kernel/locking/lockdep.c:5190
lock_acquire+0x14c/0x2e0 kernel/locking/lockdep.c:5871
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x5c/0x7c kernel/locking/spinlock.c:162
vgic_put_irq+0xb4/0x190 arch/arm64/kvm/vgic/vgic.c:137
vgic_flush_pending_lpis+0x24c/0x31c arch/arm64/kvm/vgic/vgic.c:158
__kvm_vgic_vcpu_destroy+0x44/0x500 arch/arm64/kvm/vgic/vgic-init.c:455
kvm_vgic_destroy+0x100/0x624 arch/arm64/kvm/vgic/vgic-init.c:505
kvm_arch_destroy_vm+0x80/0x138 arch/arm64/kvm/arm.c:244
kvm_destroy_vm virt/kvm/kvm_main.c:1308 [inline]
kvm_put_kvm+0x800/0xff8 virt/kvm/kvm_main.c:1344
kvm_vm_release+0x58/0x78 virt/kvm/kvm_main.c:1367
__fput+0x4ac/0x980 fs/file_table.c:465
____fput+0x20/0x58 fs/file_table.c:493
task_work_run+0x1bc/0x254 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
do_notify_resume+0x1b4/0x270 arch/arm64/kernel/entry-common.c:151
exit_to_user_mode_prepare arch/arm64/kernel/entry-common.c:169 [inline]
exit_to_user_mode arch/arm64/kernel/entry-common.c:178 [inline]
el0_svc+0xb4/0x160 arch/arm64/kernel/entry-common.c:768
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
This is of course no good, but is at odds with how LPI refcounts are
managed. Solve the locking mess by deferring the release of unreferenced
LPIs after the ap_list_lock is released. Mark these to-be-released LPIs
specially to avoid racing with vgic_put_irq() and causing a double-free.
Since references can only be taken on LPIs with a nonzero refcount,
extending the lifetime of freed LPIs is still safe.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Reported-by: syzbot+cef594105ac7e60c6d93@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/kvmarm/68acd0d9.a00a0220.33401d.048b.GAE@google.com/
Link: https://lore.kernel.org/r/20250905100531.282980-5-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 24, 2025
Ido Schimmel says: ==================== ipv4: icmp: Fix source IP derivation in presence of VRFs Align IPv4 with IPv6 and in the presence of VRFs generate ICMP error messages with a source IP that is derived from the receiving interface and not from its VRF master. This is especially important when the error messages are "Time Exceeded" messages as it means that utilities like traceroute will show an incorrect packet path. Patches #1-#2 are preparations. Patch #3 is the actual change. Patches #4-#7 make small improvements in the existing traceroute test. Patch #8 extends the traceroute test with VRF test cases for both IPv4 and IPv6. Changes since v1 [1]: * Rebase. [1] https://lore.kernel.org/netdev/20250901083027.183468-1-idosch@nvidia.com/ ==================== Link: https://patch.msgid.link/20250908073238.119240-1-idosch@nvidia.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 24, 2025
Petr Machata says: ==================== bridge: Allow keeping local FDB entries only on VLAN 0 The bridge FDB contains one local entry per port per VLAN, for the MAC of the port in question, and likewise for the bridge itself. This allows bridge to locally receive and punt "up" any packets whose destination MAC address matches that of one of the bridge interfaces or of the bridge itself. The number of these local "service" FDB entries grows linearly with number of bridge-global VLAN memberships, but that in turn will tend to grow quadratically with number of ports and per-port VLAN memberships. While that does not cause issues during forwarding lookups, it does make dumps impractically slow. As an example, with 100 interfaces, each on 4K VLANs, a full dump of FDB that just contains these 400K local entries, takes 6.5s. That's _without_ considering iproute2 formatting overhead, this is just how long it takes to walk the FDB (repeatedly), serialize it into netlink messages, and parse the messages back in userspace. This is to illustrate that with growing number of ports and VLANs, the time required to dump this repetitive information blows up. Arguably 4K VLANs per interface is not a very realistic configuration, but then modern switches can instead have several hundred interfaces, and we have fielded requests for >1K VLAN memberships per port among customers. FDB entries are currently all kept on a single linked list, and then dumping uses this linked list to walk all entries and dump them in order. When the message buffer is full, the iteration is cut short, and later restarted. Of course, to restart the iteration, it's first necessary to walk the already-dumped front part of the list before starting dumping again. So one possibility is to organize the FDB entries in different structure more amenable to walk restarts. One option is to walk directly the hash table. The advantage is that no auxiliary structure needs to be introduced. With a rough sketch of this approach, the above scenario gets dumped in not quite 3 s, saving over 50 % of time. However hash table iteration requires maintaining an active cursor that must be collected when the dump is aborted. It looks like that would require changes in the NDO protocol to allow to run this cleanup. Moreover, on hash table resize the iteration is simply restarted. FDB dumps are currently not guaranteed to correspond to any one particular state: entries can be missed, or be duplicated. But with hash table iteration we would get that plus the much less graceful resize behavior, where swaths of FDB are duplicated. Another option is to maintain the FDB entries in a red-black tree. We have a PoC of this approach on hand, and the above scenario is dumped in about 2.5 s. Still not as snappy as we'd like it, but better than the hash table. However the savings come at the expense of a more expensive insertion, and require locking during dumps, which blocks insertion. The upside of these approaches is that they provide benefits whatever the FDB contents. But it does not seem like either of these is workable. However we intend to clean up the RB tree PoC and present it for consideration later on in case the trade-offs are considered acceptable. Yet another option might be to use in-kernel FDB filtering, and to filter the local entries when dumping. Unfortunately, this does not help all that much either, because the linked-list walk still needs to happen. Also, with the obvious filtering interface built around ndm_flags / ndm_state filtering, one can't just exclude pure local entries in one query. One needs to dump all non-local entries first, and then to get permanent entries in another run filter local & added_by_user. I.e. one needs to pay the iteration overhead twice, and then integrate the result in userspace. To get significant savings, one would need a very specific knob like "dump, but skip/only include local entries". But if we are adding a local-specific knobs, maybe let's have an option to just not duplicate them in the first place. All this FDB duplication is there merely to make things snappy during forwarding. But high-radix switches with thousands of VLANs typically do not process much traffic in the SW datapath at all, but rather offload vast majority of it. So we could exchange some of the runtime performance for a neater FDB. To that end, in this patchset, introduce a new bridge option, BR_BOOLOPT_FDB_LOCAL_VLAN_0, which when enabled, has local FDB entries installed only on VLAN 0, instead of duplicating them across all VLANs. Then to maintain the local termination behavior, on FDB miss, the bridge does a second lookup on VLAN 0. Enabling this option changes the bridge behavior in expected ways. Since the entries are only kept on VLAN 0, FDB get, flush and dump will not perceive them on non-0 VLANs. And deleting the VLAN 0 entry affects forwarding on all VLANs. This patchset is loosely based on a privately circulated patch by Nikolay Aleksandrov. The patchset progresses as follows: - Patch #1 introduces a bridge option to enable the above feature. Then patches #2 to #5 gradually patch the bridge to do the right thing when the option is enabled. Finally patch #6 adds the UAPI knob and the code for when the feature is enabled or disabled. - Patches #7, #8 and #9 contain fixes and improvements to selftest libraries - Patch #10 contains a new selftest ==================== Link: https://patch.msgid.link/cover.1757004393.git.petrm@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 29, 2025
This attemps to fix possible UAFs caused by struct mgmt_pending being freed while still being processed like in the following trace, in order to fix mgmt_pending_valid is introduce and use to check if the mgmt_pending hasn't been removed from the pending list, on the complete callbacks it is used to check and in addtion remove the cmd from the list while holding mgmt_pending_lock to avoid TOCTOU problems since if the cmd is left on the list it can still be accessed and freed. BUG: KASAN: slab-use-after-free in mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223 Read of size 8 at addr ffff8880709d4dc0 by task kworker/u11:0/55 CPU: 0 UID: 0 PID: 55 Comm: kworker/u11:0 Not tainted 6.16.4 #2 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x711/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16.4/arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 12210: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4364 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] mgmt_pending_new+0x65/0x1e0 net/bluetooth/mgmt_util.c:269 mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 __add_adv_patterns_monitor+0x130/0x200 net/bluetooth/mgmt.c:5247 add_adv_patterns_monitor+0x214/0x360 net/bluetooth/mgmt.c:5364 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:729 sock_write_iter+0x258/0x330 net/socket.c:1133 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 12221: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2381 [inline] slab_free mm/slub.c:4648 [inline] kfree+0x18e/0x440 mm/slub.c:4847 mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 __mgmt_power_off+0x169/0x350 net/bluetooth/mgmt.c:9444 hci_dev_close_sync+0x754/0x1330 net/bluetooth/hci_sync.c:5290 hci_dev_do_close net/bluetooth/hci_core.c:501 [inline] hci_dev_close+0x108/0x200 net/bluetooth/hci_core.c:526 sock_do_ioctl+0xd9/0x300 net/socket.c:1192 sock_ioctl+0x576/0x790 net/socket.c:1313 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Fixes: cf75ad8 ("Bluetooth: hci_sync: Convert MGMT_SET_POWERED") Fixes: 2bd1b23 ("Bluetooth: hci_sync: Convert MGMT_OP_SET_DISCOVERABLE to use cmd_sync") Fixes: f056a65 ("Bluetooth: hci_sync: Convert MGMT_OP_SET_CONNECTABLE to use cmd_sync") Fixes: 3244845 ("Bluetooth: hci_sync: Convert MGMT_OP_SSP") Fixes: d81a494 ("Bluetooth: hci_sync: Convert MGMT_OP_SET_LE") Fixes: b338d91 ("Bluetooth: Implement support for Mesh") Fixes: 6f6ff38 ("Bluetooth: hci_sync: Convert MGMT_OP_SET_LOCAL_NAME") Fixes: 71efbb0 ("Bluetooth: hci_sync: Convert MGMT_OP_SET_PHY_CONFIGURATION") Fixes: b747a83 ("Bluetooth: hci_sync: Refactor add Adv Monitor") Fixes: abfeea4 ("Bluetooth: hci_sync: Convert MGMT_OP_START_DISCOVERY") Fixes: 26ac4c5 ("Bluetooth: hci_sync: Convert MGMT_OP_SET_ADVERTISING") Reported-by: cen zhang <zzzccc427@gmail.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Sep 29, 2025
Ido Schimmel says: ==================== nexthop: Various fixes Patch #1 fixes a NPD that was recently reported by syzbot. Patch #2 fixes an issue in the existing FIB nexthop selftest. Patch #3 extends the selftest with test cases for the bug that was fixed in the first patch. ==================== Link: https://patch.msgid.link/20250921150824.149157-1-idosch@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 4, 2025
As JY reported in bugzilla [1], Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 pc : [0xffffffe51d249484] f2fs_is_cp_guaranteed+0x70/0x98 lr : [0xffffffe51d24adbc] f2fs_merge_page_bio+0x520/0x6d4 CPU: 3 UID: 0 PID: 6790 Comm: kworker/u16:3 Tainted: P B W OE 6.12.30-android16-5-maybe-dirty-4k #1 5f7701c9cbf727d1eebe77c89bbbeb3371e895e5 Tainted: [P]=PROPRIETARY_MODULE, [B]=BAD_PAGE, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Workqueue: writeback wb_workfn (flush-254:49) Call trace: f2fs_is_cp_guaranteed+0x70/0x98 f2fs_inplace_write_data+0x174/0x2f4 f2fs_do_write_data_page+0x214/0x81c f2fs_write_single_data_page+0x28c/0x764 f2fs_write_data_pages+0x78c/0xce4 do_writepages+0xe8/0x2fc __writeback_single_inode+0x4c/0x4b4 writeback_sb_inodes+0x314/0x540 __writeback_inodes_wb+0xa4/0xf4 wb_writeback+0x160/0x448 wb_workfn+0x2f0/0x5dc process_scheduled_works+0x1c8/0x458 worker_thread+0x334/0x3f0 kthread+0x118/0x1ac ret_from_fork+0x10/0x20 [1] https://bugzilla.kernel.org/show_bug.cgi?id=220575 The panic was caused by UAF issue w/ below race condition: kworker - writepages - f2fs_write_cache_pages - f2fs_write_single_data_page - f2fs_do_write_data_page - f2fs_inplace_write_data - f2fs_merge_page_bio - add_inu_page : cache page #1 into bio & cache bio in io->bio_list - f2fs_write_single_data_page - f2fs_do_write_data_page - f2fs_inplace_write_data - f2fs_merge_page_bio - add_inu_page : cache page #2 into bio which is linked in io->bio_list write - f2fs_write_begin : write page #1 - f2fs_folio_wait_writeback - f2fs_submit_merged_ipu_write - f2fs_submit_write_bio : submit bio which inclues page #1 and #2 software IRQ - f2fs_write_end_io - fscrypt_free_bounce_page : freed bounced page which belongs to page #2 - inc_page_count( , WB_DATA_TYPE(data_folio), false) : data_folio points to fio->encrypted_page the bounced page can be freed before accessing it in f2fs_is_cp_guarantee() It can reproduce w/ below testcase: Run below script in shell #1: for ((i=1;i>0;i++)) do xfs_io -f /mnt/f2fs/enc/file \ -c "pwrite 0 32k" -c "fdatasync" Run below script in shell #2: for ((i=1;i>0;i++)) do xfs_io -f /mnt/f2fs/enc/file \ -c "pwrite 0 32k" -c "fdatasync" So, in f2fs_merge_page_bio(), let's avoid using fio->encrypted_page after commit page into internal ipu cache. Fixes: 0b20fce ("f2fs: cache global IPU bio") Reported-by: JY <JY.Ho@mediatek.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 4, 2025
Write combining is an optimization feature in CPUs that is frequently used by modern devices to generate 32 or 64 byte TLPs at the PCIe level. These large TLPs allow certain optimizations in the driver to HW communication that improve performance. As WC is unpredictable and optional the HW designs all tolerate cases where combining doesn't happen and simply experience a performance degradation. Unfortunately many virtualization environments on all architectures have done things that completely disable WC inside the VM with no generic way to detect this. For example WC was fully blocked in ARM64 KVM until commit 8c47ce3 ("KVM: arm64: Set io memory s2 pte as normalnc for vfio pci device"). Trying to use WC when it is known not to work has a measurable performance cost (~5%). Long ago mlx5 developed an boot time algorithm to test if WC is available or not by using unique mlx5 HW features to measure how many large TLPs the device is receiving. The SW generates a large number of combining opportunities and if any succeed then WC is declared working. In mlx5 the WC optimization feature is never used by the kernel except for the boot time test. The WC is only used by userspace in rdma-core. Sadly modern ARM CPUs, especially NVIDIA Grace, have a combining implementation that is very unreliable compared to pretty much everything prior. This is being fixed architecturally in new CPUs with a new ST64B instruction, but current shipping devices suffer this problem. Unreliable means the SW can present thousands of combining opportunities and the HW will not combine for any of them, which creates a performance degradation, and critically fails the mlx5 boot test. However, the CPU is very sensitive to the instruction sequence used, with the better options being sufficiently good that the performance loss from the unreliable CPU is not measurable. Broadly there are several options, from worst to best: 1) A C loop doing a u64 memcpy. This was used prior to commit ef30228 ("IB/mlx5: Use __iowrite64_copy() for write combining stores") and failed almost all the time on Grace CPUs. 2) ARM64 assembly with consecutive 8 byte stores. This was implemented as an arch-generic __iowriteXX_copy() family of functions suitable for performance use in drivers for WC. commit ead7911 ("arm64/io: Provide a WC friendly __iowriteXX_copy()") provided the ARM implementation. 3) ARM64 assembly with consecutive 16 byte stores. This was rejected from kernel use over fears of virtualization failures. Common ARM VMMs will crash if STP is used against emulated memory. 4) A single NEON store instruction. Userspace has used this option for a very long time, it performs well. 5) For future silicon the new ST64B instruction is guaranteed to generate a 64 byte TLP 100% of the time The past upgrade from #1 to #2 was thought to be sufficient to solve this problem. However, more testing on more systems shows that #3 is still problematic at a low frequency and the kernel test fails. Thus, make the mlx5 use the same instructions as userspace during the boot time WC self test. This way the WC test matches the userspace and will properly detect the ability of HW to support the WC workload that userspace will generate. While #4 still has imperfect combining performance, it is substantially better than #2, and does actually give a performance win to applications. Self-test failures with #2 are like 3/10 boots, on some systems, #4 has never seen a boot failure. There is no real general use case for a NEON based WC flow in the kernel. This is not suitable for any performance path work as getting into/out of a NEON context is fairly expensive compared to the gain of WC. Future CPUs are going to fix this issue by using an new ARM instruction and __iowriteXX_copy() will be updated to use that automatically, probably using the ALTERNATES mechanism. Since this problem is constrained to mlx5's unique situation of needing a non-performance code path to duplicate what mlx5 userspace is doing as a matter of self-testing, implement it as a one line inline assembly in the driver directly. Lastly, this was concluded from the discussion with ARM maintainers which confirms that this is the best approach for the solution: https://lore.kernel.org/r/aHqN_hpJl84T1Usi@arm.com Signed-off-by: Patrisious Haddad <phaddad@nvidia.com> Reviewed-by: Michael Guralnik <michaelgur@nvidia.com> Reviewed-by: Moshe Shemesh <moshe@nvidia.com> Signed-off-by: Tariq Toukan <tariqt@nvidia.com> Link: https://patch.msgid.link/1759093688-841357-1-git-send-email-tariqt@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 12, 2025
Check for an invalid length during LAUNCH_UPDATE at the start of snp_launch_update() instead of subtly relying on kvm_gmem_populate() to detect the bad state. Code that directly handles userspace input absolutely should sanitize those inputs; failure to do so is asking for bugs where KVM consumes an invalid "npages". Keep the check in gmem, but wrap it in a WARN to flag any bad usage by the caller. Note, this is technically an ABI change as KVM would previously allow a length of '0'. But allowing a length of '0' is nonsensical and creates pointless conundrums in KVM. E.g. an empty range is arguably neither private nor shared, but LAUNCH_UPDATE will fail if the starting gpa can't be made private. In practice, no known or well-behaved VMM passes a length of '0'. Note #2, the PAGE_ALIGNED(params.len) check ensures that lengths between 1 and 4095 (inclusive) are also rejected, i.e. that KVM won't end up with npages=0 when doing "npages = params.len / PAGE_SIZE". Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Michael Roth <michael.roth@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20250919211649.1575654-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 12, 2025
Don't emulate branch instructions, e.g. CALL/RET/JMP etc., that are affected by Shadow Stacks and/or Indirect Branch Tracking when said features are enabled in the guest, as fully emulating CET would require significant complexity for no practical benefit (KVM shouldn't need to emulate branch instructions on modern hosts). Simply doing nothing isn't an option as that would allow a malicious entity to subvert CET protections via the emulator. To detect instructions that are subject to IBT or affect IBT state, use the existing IsBranch flag along with the source operand type to detect indirect branches, and the existing NearBranch flag to detect far JMPs and CALLs, all of which are effectively indirect. Explicitly check for emulation of IRET, FAR RET (IMM), and SYSEXIT (the ret-like far branches) instead of adding another flag, e.g. IsRet, as it's unlikely the emulator will ever need to check for return-like instructions outside of this one specific flow. Use an allow-list instead of a deny-list because (a) it's a shorter list and (b) so that a missed entry gets a false positive, not a false negative (i.e. reject emulation instead of clobbering CET state). For Shadow Stacks, explicitly track instructions that directly affect the current SSP, as KVM's emulator doesn't have existing flags that can be used to precisely detect such instructions. Alternatively, the em_xxx() helpers could directly check for ShadowStack interactions, but using a dedicated flag is arguably easier to audit, and allows for handling both IBT and SHSTK in one fell swoop. Note! On far transfers, do NOT consult the current privilege level and instead treat SHSTK/IBT as being enabled if they're enabled for User *or* Supervisor mode. On inter-privilege level far transfers, SHSTK and IBT can be in play for the target privilege level, i.e. checking the current privilege could get a false negative, and KVM doesn't know the target privilege level until emulation gets under way. Note #2, FAR JMP from 64-bit mode to compatibility mode interacts with the current SSP, but only to ensure SSP[63:32] == 0. Don't tag FAR JMP as SHSTK, which would be rather confusing and would result in FAR JMP being rejected unnecessarily the vast majority of the time (ignoring that it's unlikely to ever be emulated). A future commit will add the #GP(0) check for the specific FAR JMP scenario. Note #3, task switches also modify SSP and so need to be rejected. That too will be addressed in a future commit. Suggested-by: Chao Gao <chao.gao@intel.com> Originally-by: Yang Weijiang <weijiang.yang@intel.com> Cc: Mathias Krause <minipli@grsecurity.net> Cc: John Allen <john.allen@amd.com> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20250919223258.1604852-19-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 12, 2025
Before disabling SR-IOV via config space accesses to the parent PF, sriov_disable() first removes the PCI devices representing the VFs. Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()") such removal operations are serialized against concurrent remove and rescan using the pci_rescan_remove_lock. No such locking was ever added in sriov_disable() however. In particular when commit 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device removal into sriov_del_vfs() there was still no locking around the pci_iov_remove_virtfn() calls. On s390 the lack of serialization in sriov_disable() may cause double remove and list corruption with the below (amended) trace being observed: PSW: 0704c00180000000 0000000c914e4b38 (klist_put+56) GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001 00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480 0000000000000001 0000000000000000 0000000000000000 0000000180692828 00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8 #0 [3800313fb20] device_del at c9158ad5c #1 [3800313fb88] pci_remove_bus_device at c915105ba #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198 #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0 #4 [3800313fc60] zpci_bus_remove_device at c90fb6104 #5 [3800313fca0] __zpci_event_availability at c90fb3dca #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2 #7 [3800313fd60] crw_collect_info at c91905822 #8 [3800313fe10] kthread at c90feb390 #9 [3800313fe68] __ret_from_fork at c90f6aa64 #10 [3800313fe98] ret_from_fork at c9194f3f2. This is because in addition to sriov_disable() removing the VFs, the platform also generates hot-unplug events for the VFs. This being the reverse operation to the hotplug events generated by sriov_enable() and handled via pdev->no_vf_scan. And while the event processing takes pci_rescan_remove_lock and checks whether the struct pci_dev still exists, the lack of synchronization makes this checking racy. Other races may also be possible of course though given that this lack of locking persisted so long observable races seem very rare. Even on s390 the list corruption was only observed with certain devices since the platform events are only triggered by config accesses after the removal, so as long as the removal finished synchronously they would not race. Either way the locking is missing so fix this by adding it to the sriov_del_vfs() helper. Just like PCI rescan-remove, locking is also missing in sriov_add_vfs() including for the error case where pci_stop_and_remove_bus_device() is called without the PCI rescan-remove lock being held. Even in the non-error case, adding new PCI devices and buses should be serialized via the PCI rescan-remove lock. Add the necessary locking. Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()") Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Reviewed-by: Farhan Ali <alifm@linux.ibm.com> Reviewed-by: Julian Ruess <julianr@linux.ibm.com> Cc: stable@vger.kernel.org Link: https://patch.msgid.link/20250826-pci_fix_sriov_disable-v1-1-2d0bc938f2a3@linux.ibm.com
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 14, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 14, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 15, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 15, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 15, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 16, 2025
Since blamed commit, unregister_netdevice_many_notify() takes the netdev
mutex if the device needs it.
If the device list is too long, this will lock more device mutexes than
lockdep can handle:
unshare -n \
bash -c 'for i in $(seq 1 100);do ip link add foo$i type dummy;done'
BUG: MAX_LOCK_DEPTH too low!
turning off the locking correctness validator.
depth: 48 max: 48!
48 locks held by kworker/u16:1/69:
#0: ..148 ((wq_completion)netns){+.+.}-{0:0}, at: process_one_work
#1: ..d40 (net_cleanup_work){+.+.}-{0:0}, at: process_one_work
#2: ..bd0 (pernet_ops_rwsem){++++}-{4:4}, at: cleanup_net
#3: ..aa8 (rtnl_mutex){+.+.}-{4:4}, at: default_device_exit_batch
#4: ..cb0 (&dev_instance_lock_key#3){+.+.}-{4:4}, at: unregister_netdevice_many_notify
[..]
Add a helper to close and then unlock a list of net_devices.
Devices that are not up have to be skipped - netif_close_many always
removes them from the list without any other actions taken, so they'd
remain in locked state.
Close devices whenever we've used up half of the tracking slots or we
processed entire list without hitting the limit.
Fixes: 7e4d784 ("net: hold netdev instance lock during rtnetlink operations")
Signed-off-by: Florian Westphal <fw@strlen.de>
Link: https://patch.msgid.link/20251013185052.14021-1-fw@strlen.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 16, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 16, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 17, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 19, 2025
Expand the prefault memory selftest to add a regression test for a KVM bug where KVM's retry logic would result in (breakable) deadlock due to the memslot deletion waiting on prefaulting to release SRCU, and prefaulting waiting on the memslot to fully disappear (KVM uses a two-step process to delete memslots, and KVM x86 retries page faults if a to-be-deleted, a.k.a. INVALID, memslot is encountered). To exercise concurrent memslot remove, spawn a second thread to initiate memslot removal at roughly the same time as prefaulting. Test memslot removal for all testcases, i.e. don't limit concurrent removal to only the success case. There are essentially three prefault scenarios (so far) that are of interest: 1. Success 2. ENOENT due to no memslot 3. EAGAIN due to INVALID memslot For all intents and purposes, #1 and #2 are mutually exclusive, or rather, easier to test via separate testcases since writing to non-existent memory is trivial. But for #3, making it mutually exclusive with #1 _or_ #2 is actually more complex than testing memslot removal for all scenarios. The only requirement to let memslot removal coexist with other scenarios is a way to guarantee a stable result, e.g. that the "no memslot" test observes ENOENT, not EAGAIN, for the final checks. So, rather than make memslot removal mutually exclusive with the ENOENT scenario, simply restore the memslot and retry prefaulting. For the "no memslot" case, KVM_PRE_FAULT_MEMORY should be idempotent, i.e. should always fail with ENOENT regardless of how many times userspace attempts prefaulting. Pass in both the base GPA and the offset (instead of the "full" GPA) so that the worker can recreate the memslot. Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250924174255.2141847-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 19, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 19, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
kernel-patches-daemon-bpf-rc bot
pushed a commit
that referenced
this pull request
Oct 19, 2025
With latest llvm22, I hit the verif_scale_strobemeta selftest failure below: $ ./test_progs -n 618 libbpf: prog 'on_event': BPF program load failed: -E2BIG libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG -- BPF program is too large. Processed 1000001 insn verification time 7019091 usec stack depth 488 processed 1000001 insns (limit 1000000) max_states_per_insn 28 total_states 33927 peak_states 12813 mark_read 0 -- END PROG LOAD LOG -- libbpf: prog 'on_event': failed to load: -E2BIG libbpf: failed to load object 'strobemeta.bpf.o' scale_test:FAIL:expect_success unexpected error: -7 (errno 7) #618 verif_scale_strobemeta:FAIL But if I increase the verificaiton insn limit from 1M to 10M, the above test_progs run actually will succeed. The below is the result from veristat: $ ./veristat strobemeta.bpf.o Processing 'strobemeta.bpf.o'... File Program Verdict Duration (us) Insns States Program size Jited size ---------------- -------- ------- ------------- ------- ------ ------------ ---------- strobemeta.bpf.o on_event success 90250893 9777685 358230 15954 80794 ---------------- -------- ------- ------------- ------- ------ ------------ ---------- Done. Processed 1 files, 0 programs. Skipped 1 files, 0 programs. Further debugging shows the llvm commit [1] is responsible for the verificaiton failure as it tries to convert certain switch statement to if-condition. Such change may cause different transformation compared to original switch statement. In bpf program strobemeta.c case, the initial llvm ir for read_int_var() function is define internal void @read_int_var(ptr noundef %0, i64 noundef %1, ptr noundef %2, ptr noundef %3, ptr noundef %4) #2 !dbg !535 { %6 = alloca ptr, align 8 %7 = alloca i64, align 8 %8 = alloca ptr, align 8 %9 = alloca ptr, align 8 %10 = alloca ptr, align 8 %11 = alloca ptr, align 8 %12 = alloca i32, align 4 ... %20 = icmp ne ptr %19, null, !dbg !561 br i1 %20, label %22, label %21, !dbg !562 21: ; preds = %5 store i32 1, ptr %12, align 4 br label %48, !dbg !563 22: %23 = load ptr, ptr %9, align 8, !dbg !564 ... 47: ; preds = %38, %22 store i32 0, ptr %12, align 4, !dbg !588 br label %48, !dbg !588 48: ; preds = %47, %21 call void @llvm.lifetime.end.p0(ptr %11) #4, !dbg !588 %49 = load i32, ptr %12, align 4 switch i32 %49, label %51 [ i32 0, label %50 i32 1, label %50 ] 50: ; preds = %48, %48 ret void, !dbg !589 51: ; preds = %48 unreachable } Note that the above 'switch' statement is added by clang frontend. Without [1], the switch statement will survive until SelectionDag, so the switch statement acts like a 'barrier' and prevents some transformation involved with both 'before' and 'after' the switch statement. But with [1], the switch statement will be removed during middle end optimization and later middle end passes (esp. after inlining) have more freedom to reorder the code. The following is the related source code: static void *calc_location(struct strobe_value_loc *loc, void *tls_base): bpf_probe_read_user(&tls_ptr, sizeof(void *), dtv); /* if pointer has (void *)-1 value, then TLS wasn't initialized yet */ return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; In read_int_var() func, we have: void *location = calc_location(&cfg->int_locs[idx], tls_base); if (!location) return; bpf_probe_read_user(value, sizeof(struct strobe_value_generic), location); ... The static func calc_location() is called inside read_int_var(). The asm code without [1]: 77: .123....89 (85) call bpf_probe_read_user#112 78: ........89 (79) r1 = *(u64 *)(r10 -368) 79: .1......89 (79) r2 = *(u64 *)(r10 -8) 80: .12.....89 (bf) r3 = r2 81: .123....89 (0f) r3 += r1 82: ..23....89 (07) r2 += 1 83: ..23....89 (79) r4 = *(u64 *)(r10 -464) 84: ..234...89 (a5) if r2 < 0x2 goto pc+13 85: ...34...89 (15) if r3 == 0x0 goto pc+12 86: ...3....89 (bf) r1 = r10 87: .1.3....89 (07) r1 += -400 88: .1.3....89 (b4) w2 = 16 In this case, 'r2 < 0x2' and 'r3 == 0x0' go to null 'locaiton' place, so the verifier actually prefers to do verification first at 'r1 = r10' etc. The asm code with [1]: 119: .123....89 (85) call bpf_probe_read_user#112 120: ........89 (79) r1 = *(u64 *)(r10 -368) 121: .1......89 (79) r2 = *(u64 *)(r10 -8) 122: .12.....89 (bf) r3 = r2 123: .123....89 (0f) r3 += r1 124: ..23....89 (07) r2 += -1 125: ..23....89 (a5) if r2 < 0xfffffffe goto pc+6 126: ........89 (05) goto pc+17 ... 144: ........89 (b4) w1 = 0 145: .1......89 (6b) *(u16 *)(r8 +80) = r1 In this case, if 'r2 < 0xfffffffe' is true, the control will go to non-null 'location' branch, so 'goto pc+17' will actually go to null 'location' branch. This seems causing tremendous amount of verificaiton state. To fix the issue, rewrite the following code return tls_ptr && tls_ptr != (void *)-1 ? tls_ptr + tls_index.offset : NULL; to if/then statement and hopefully these explicit if/then statements are sticky during middle-end optimizations. Test with llvm20 and llvm21 as well and all strobemeta related selftests are passed. [1] llvm/llvm-project#161000 Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20251014051639.1996331-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
branch: master_test
base:bpf
version: 3df9d80