Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

introduce xdp frags support to veth driver #10

Closed
wants to merge 4 commits into from

Conversation

kernel-patches-bot
Copy link

Pull request for series with
subject: introduce xdp frags support to veth driver
version: 2
url: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531

@kernel-patches-bot
Copy link
Author

Master branch: edc21dc
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: d2b94f3
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 8cbf062
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 8cbf062
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 477bb4c
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 2e3f7be
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: f76d850
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 9b6eb04
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 1b8c924
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 9e98ace
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: 1b8c924
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: b38101c
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

@kernel-patches-bot
Copy link
Author

Master branch: b75daca
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=614531
version: 2

kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 6, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 7, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 7, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 7, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 7, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 8, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 8, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
Link: https://lore.kernel.org/r/20240426161116.441-1-puranjay@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 14, 2024
Wen Gu says:

====================
net/smc: SMC intra-OS shortcut with loopback-ism

This patch set acts as the second part of the new version of [1] (The first
part can be referred from [2]), the updated things of this version are listed
at the end.

- Background

SMC-D is now used in IBM z with ISM function to optimize network interconnect
for intra-CPC communications. Inspired by this, we try to make SMC-D available
on the non-s390 architecture through a software-implemented Emulated-ISM device,
that is the loopback-ism device here, to accelerate inter-process or
inter-containers communication within the same OS instance.

- Design

This patch set includes 3 parts:

 - Patch #1: some prepare work for loopback-ism.
 - Patch #2-#7: implement loopback-ism device and adapt SMC-D for it.
   loopback-ism now serves only SMC and no userspace interfaces exposed.
 - Patch #8-#11: memory copy optimization for intra-OS scenario.

The loopback-ism device is designed as an ISMv2 device and not be limited to
a specific net namespace, ends of both inter-process connection (1/1' in diagram
below) or inter-container connection (2/2' in diagram below) can find the same
available loopback-ism and choose it during the CLC handshake.

 Container 1 (ns1)                              Container 2 (ns2)
 +-----------------------------------------+    +-------------------------+
 | +-------+      +-------+      +-------+ |    |        +-------+        |
 | | App A |      | App B |      | App C | |    |        | App D |<-+     |
 | +-------+      +---^---+      +-------+ |    |        +-------+  |(2') |
 |     |127.0.0.1 (1')|             |192.168.0.11       192.168.0.12|     |
 |  (1)|   +--------+ | +--------+  |(2)   |    | +--------+   +--------+ |
 |     `-->|   lo   |-` |  eth0  |<-`      |    | |   lo   |   |  eth0  | |
 +---------+--|---^-+---+-----|--+---------+    +-+--------+---+-^------+-+
              |   |           |                                  |
 Kernel       |   |           |                                  |
 +----+-------v---+-----------v----------------------------------+---+----+
 |    |                            TCP                               |    |
 |    |                                                              |    |
 |    +--------------------------------------------------------------+    |
 |                                                                        |
 |                           +--------------+                             |
 |                           | smc loopback |                             |
 +---------------------------+--------------+-----------------------------+

loopback-ism device creates DMBs (shared memory) for each connection peer.
Since data transfer occurs within the same kernel, the sndbuf of each peer
is only a descriptor and point to the same memory region as peer DMB, so that
the data copy from sndbuf to peer DMB can be avoided in loopback-ism case.

 Container 1 (ns1)                              Container 2 (ns2)
 +-----------------------------------------+    +-------------------------+
 | +-------+                               |    |        +-------+        |
 | | App C |-----+                         |    |        | App D |        |
 | +-------+     |                         |    |        +-^-----+        |
 |               |                         |    |          |              |
 |           (2) |                         |    |     (2') |              |
 |               |                         |    |          |              |
 +---------------|-------------------------+    +----------|--------------+
                 |                                         |
 Kernel          |                                         |
 +---------------|-----------------------------------------|--------------+
 | +--------+ +--v-----+                           +--------+ +--------+  |
 | |dmb_desc| |snd_desc|                           |dmb_desc| |snd_desc|  |
 | +-----|--+ +--|-----+                           +-----|--+ +--------+  |
 | +-----|--+    |                                 +-----|--+             |
 | | DMB C  |    +---------------------------------| DMB D  |             |
 | +--------+                                      +--------+             |
 |                                                                        |
 |                           +--------------+                             |
 |                           | smc loopback |                             |
 +---------------------------+--------------+-----------------------------+

- Benchmark Test

 * Test environments:
      - VM with Intel Xeon Platinum 8 core 2.50GHz, 16 GiB mem.
      - SMC sndbuf/DMB size 1MB.

 * Test object:
      - TCP: run on TCP loopback.
      - SMC lo: run on SMC loopback-ism.

1. ipc-benchmark (see [3])

 - ./<foo> -c 1000000 -s 100

                            TCP                  SMC-lo
Message
rate (msg/s)              84991                  151293(+78.01%)

2. sockperf

 - serv: <smc_run> sockperf sr --tcp
 - clnt: <smc_run> sockperf { tp | pp } --tcp --msg-size={ 64000 for tp | 14 for pp } -i 127.0.0.1 -t 30

                            TCP                  SMC-lo
Bandwidth(MBps)        5033.569                7987.732(+58.69%)
Latency(us)               5.986                   3.398(-43.23%)

3. nginx/wrk

 - serv: <smc_run> nginx
 - clnt: <smc_run> wrk -t 8 -c 1000 -d 30 http://127.0.0.1:80

                           TCP                   SMC-lo
Requests/s           187951.76                267107.90(+42.12%)

4. redis-benchmark

 - serv: <smc_run> redis-server
 - clnt: <smc_run> redis-benchmark -h 127.0.0.1 -q -t set,get -n 400000 -c 200 -d 1024

                           TCP                   SMC-lo
GET(Requests/s)       86132.64                118133.49(+37.15%)
SET(Requests/s)       87374.40                122887.86(+40.65%)

Change log:
v7->v6
- Patch #2: minor: remove unnecessary 'return' of inline smc_loopback_exit().
- Patch #10: minor: directly return 0 instead of 'rc' in smcd_cdc_msg_send().
- all: collect the Reviewed-by tags.

v6->RFC v5
Link: https://lore.kernel.org/netdev/20240414040304.54255-1-guwen@linux.alibaba.com/
- Patch #2: make the use of CONFIG_SMC_LO cleaner.
- Patch #5: mark some smcd_ops that loopback-ism doesn't support as
  optional and check for the support when they are called.
- Patch #7: keep loopback-ism at the beginning of the SMC-D device list.
- Some expression changes in commit logs and comments.

RFC v5->RFC v4:
Link: https://lore.kernel.org/netdev/20240324135522.108564-1-guwen@linux.alibaba.com/
- Patch #2: minor changes in description of config SMC_LO and comments.
- Patch #10: minor changes in comments and if(smc_ism_support_dmb_nocopy())
  check in smcd_cdc_msg_send().
- Patch #3: change smc_lo_generate_id() to smc_lo_generate_ids() and SMC_LO_CHID
  to SMC_LO_RESERVED_CHID.
- Patch #5: memcpy while holding the ldev->dmb_ht_lock.
- Some expression changes in commit logs.

RFC v4->v3:
Link: https://lore.kernel.org/netdev/20240317100545.96663-1-guwen@linux.alibaba.com/
- The merge window of v6.9 is open, so post this series as an RFC.
- Patch #6: since some information fed back by smc_nl_handle_smcd_dev() dose
  not apply to Emulated-ISM (including loopback-ism here), loopback-ism is
  not exposed through smc netlink for the time being. we may refactor this
  part when smc netlink interface is updated.

v3->v2:
Link: https://lore.kernel.org/netdev/20240312142743.41406-1-guwen@linux.alibaba.com/
- Patch #11: use tasklet_schedule(&conn->rx_tsklet) instead of smcd_cdc_rx_handler()
  to avoid possible recursive locking of conn->send_lock and use {read|write}_lock_bh()
  to acquire dmb_ht_lock.

v2->v1:
Link: https://lore.kernel.org/netdev/20240307095536.29648-1-guwen@linux.alibaba.com/
- All the patches: changed the term virtual-ISM to Emulated-ISM as defined by SMCv2.1.
- Patch #3: optimized the description of SMC_LO config. Avoid exposing loopback-ism
  to sysfs and remove all the knobs until future definition clear.
- Patch #3: try to make lockdep happy by using read_lock_bh() in smc_lo_move_data().
- Patch #6: defaultly use physical contiguous DMB buffers.
- Patch #11: defaultly enable DMB no-copy for loopback-ism and free the DMB in
  unregister_dmb or detach_dmb when dmb_node->refcnt reaches 0, instead of using
  wait_event to keep waiting in unregister_dmb.

v1->RFC:
Link: https://lore.kernel.org/netdev/20240111120036.109903-1-guwen@linux.alibaba.com/
- Patch #9: merge rx_bytes and tx_bytes as xfer_bytes statistics:
  /sys/devices/virtual/smc/loopback-ism/xfer_bytes
- Patch #10: add support_dmb_nocopy operation to check if SMC-D device supports
  merging sndbuf with peer DMB.
- Patch #13 & #14: introduce loopback-ism device control of DMB memory type and
  control of whether to merge sndbuf and DMB. They can be respectively set by:
  /sys/devices/virtual/smc/loopback-ism/dmb_type
  /sys/devices/virtual/smc/loopback-ism/dmb_copy
  The motivation for these two control is that a performance bottleneck was
  found when using vzalloced DMB and sndbuf is merged with DMB, and there are
  many CPUs and CONFIG_HARDENED_USERCOPY is set [4]. The bottleneck is caused
  by the lock contention in vmap_area_lock [5] which is involved in memcpy_from_msg()
  or memcpy_to_msg(). Currently, Uladzislau Rezki is working on mitigating the
  vmap lock contention [6]. It has significant effects, but using virtual memory
  still has additional overhead compared to using physical memory.
  So this new version provides controls of dmb_type and dmb_copy to suit
  different scenarios.
- Some minor changes and comments improvements.

RFC->old version([1]):
Link: https://lore.kernel.org/netdev/1702214654-32069-1-git-send-email-guwen@linux.alibaba.com/
- Patch #1: improve the loopback-ism dump, it shows as follows now:
  # smcd d
  FID  Type  PCI-ID        PCHID  InUse  #LGs  PNET-ID
  0000 0     loopback-ism  ffff   No        0
- Patch #3: introduce the smc_ism_set_v2_capable() helper and set
  smc_ism_v2_capable when ISMv2 or virtual ISM is registered,
  regardless of whether there is already a device in smcd device list.
- Patch #3: loopback-ism will be added into /sys/devices/virtual/smc/loopback-ism/.
- Patch #8: introduce the runtime switch /sys/devices/virtual/smc/loopback-ism/active
  to activate or deactivate the loopback-ism.
- Patch #9: introduce the statistics of loopback-ism by
  /sys/devices/virtual/smc/loopback-ism/{{tx|rx}_tytes|dmbs_cnt}.
- Some minor changes and comments improvements.

[1] https://lore.kernel.org/netdev/1695568613-125057-1-git-send-email-guwen@linux.alibaba.com/
[2] https://lore.kernel.org/netdev/20231219142616.80697-1-guwen@linux.alibaba.com/
[3] https://github.com/goldsborough/ipc-bench
[4] https://lore.kernel.org/all/3189e342-c38f-6076-b730-19a6efd732a5@linux.alibaba.com/
[5] https://lore.kernel.org/all/238e63cd-e0e8-4fbf-852f-bc4d5bc35d5a@linux.alibaba.com/
[6] https://lore.kernel.org/all/20240102184633.748113-1-urezki@gmail.com/
====================

Link: https://lore.kernel.org/r/20240428060738.60843-1-guwen@linux.alibaba.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 14, 2024
…/git/pablo/gtp

Pablo neira Ayuso says:

====================
gtp pull request 24-05-07

This v3 includes:
- fix for clang uninitialized variable per Jakub.
- address Smatch and Coccinelle reports per Simon
- remove inline in new IPv6 support per Simon
- fix memleaks in netlink control plane per Simon
-o-

The following patchset contains IPv6 GTP driver support for net-next,
this also includes IPv6 over IPv4 and vice-versa:

Patch #1 removes a unnecessary stack variable initialization in the
         socket routine.

Patch #2 deals with GTP extension headers. This variable length extension
         header to decapsulate packets accordingly. Otherwise, packets are
         dropped when these extension headers are present which breaks
         interoperation with other non-Linux based GTP implementations.

Patch #3 prepares for IPv6 support by moving IPv4 specific fields in PDP
         context objects to a union.

Patch #4 adds IPv6 support while retaining backward compatibility.
         Three new attributes allows to declare an IPv6 GTP tunnel
         GTPA_FAMILY, GTPA_PEER_ADDR6 and GTPA_MS_ADDR6 as well as
         IFLA_GTP_LOCAL6 to declare the IPv6 GTP UDP socket. Up to this
         patch, only IPv6 outer in IPv6 inner is supported.

Patch #5 uses IPv6 address /64 prefix for UE/MS in the inner headers.
         Unlike IPv4, which provides a 1:1 mapping between UE/MS,
         IPv6 tunnel encapsulates traffic for /64 address as specified
         by 3GPP TS. Patch has been split from Patch #4 to highlight
         this behaviour.

Patch #6 passes up IPv6 link-local traffic, such as IPv6 SLAAC, for
         handling to userspace so they are handled as control packets.

Patch #7 prepares to allow for GTP IPv4 over IPv6 and vice-versa by
         moving IP specific debugging out of the function to build
         IPv4 and IPv6 GTP packets.

Patch #8 generalizes TOS/DSCP handling following similar approach as
         in the existing iptunnel infrastructure.

Patch #9 adds a helper function to build an IPv4 GTP packet in the outer
         header.

Patch #10 adds a helper function to build an IPv6 GTP packet in the outer
          header.

Patch #11 adds support for GTP IPv4-over-IPv6 and vice-versa.

Patch #12 allows to use the same TID/TEID (tunnel identifier) for inner
          IPv4 and IPv6 packets for better UE/MS dual stack integration.

This series integrates with the osmocom.org project CI and TTCN-3 test
infrastructure (Oliver Smith) as well as the userspace libgtpnl library.

Thanks to Harald Welte, Oliver Smith and Pau Espin for reviewing and
providing feedback through the osmocom.org redmine platform to make this
happen.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request May 28, 2024
ui_browser__show() is capturing the input title that is stack allocated
memory in hist_browser__run().

Avoid a use after return by strdup-ing the string.

Committer notes:

Further explanation from Ian Rogers:

My command line using tui is:
$ sudo bash -c 'rm /tmp/asan.log*; export
ASAN_OPTIONS="log_path=/tmp/asan.log"; /tmp/perf/perf mem record -a
sleep 1; /tmp/perf/perf mem report'
I then go to the perf annotate view and quit. This triggers the asan
error (from the log file):
```
==1254591==ERROR: AddressSanitizer: stack-use-after-return on address
0x7f2813331920 at pc 0x7f28180
65991 bp 0x7fff0a21c750 sp 0x7fff0a21bf10
READ of size 80 at 0x7f2813331920 thread T0
    #0 0x7f2818065990 in __interceptor_strlen
../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:461
    #1 0x7f2817698251 in SLsmg_write_wrapped_string
(/lib/x86_64-linux-gnu/libslang.so.2+0x98251)
    #2 0x7f28176984b9 in SLsmg_write_nstring
(/lib/x86_64-linux-gnu/libslang.so.2+0x984b9)
    #3 0x55c94045b365 in ui_browser__write_nstring ui/browser.c:60
    #4 0x55c94045c558 in __ui_browser__show_title ui/browser.c:266
    #5 0x55c94045c776 in ui_browser__show ui/browser.c:288
    #6 0x55c94045c06d in ui_browser__handle_resize ui/browser.c:206
    #7 0x55c94047979b in do_annotate ui/browsers/hists.c:2458
    #8 0x55c94047fb17 in evsel__hists_browse ui/browsers/hists.c:3412
    #9 0x55c940480a0c in perf_evsel_menu__run ui/browsers/hists.c:3527
    #10 0x55c940481108 in __evlist__tui_browse_hists ui/browsers/hists.c:3613
    #11 0x55c9404813f7 in evlist__tui_browse_hists ui/browsers/hists.c:3661
    #12 0x55c93ffa253f in report__browse_hists tools/perf/builtin-report.c:671
    #13 0x55c93ffa58ca in __cmd_report tools/perf/builtin-report.c:1141
    #14 0x55c93ffaf159 in cmd_report tools/perf/builtin-report.c:1805
    #15 0x55c94000c05c in report_events tools/perf/builtin-mem.c:374
    #16 0x55c94000d96d in cmd_mem tools/perf/builtin-mem.c:516
    #17 0x55c9400e44ee in run_builtin tools/perf/perf.c:350
    #18 0x55c9400e4a5a in handle_internal_command tools/perf/perf.c:403
    #19 0x55c9400e4e22 in run_argv tools/perf/perf.c:447
    #20 0x55c9400e53ad in main tools/perf/perf.c:561
    #21 0x7f28170456c9 in __libc_start_call_main
../sysdeps/nptl/libc_start_call_main.h:58
    #22 0x7f2817045784 in __libc_start_main_impl ../csu/libc-start.c:360
    #23 0x55c93ff544c0 in _start (/tmp/perf/perf+0x19a4c0) (BuildId:
84899b0e8c7d3a3eaa67b2eb35e3d8b2f8cd4c93)

Address 0x7f2813331920 is located in stack of thread T0 at offset 32 in frame
    #0 0x55c94046e85e in hist_browser__run ui/browsers/hists.c:746

  This frame has 1 object(s):
    [32, 192) 'title' (line 747) <== Memory access at offset 32 is
inside this variable
HINT: this may be a false positive if your program uses some custom
stack unwind mechanism, swapcontext or vfork
```
hist_browser__run isn't on the stack so the asan error looks legit.
There's no clean init/exit on struct ui_browser so I may be trading a
use-after-return for a memory leak, but that seems look a good trade
anyway.

Fixes: 05e8b08 ("perf ui browser: Stop using 'self'")
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Ben Gainey <ben.gainey@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Li Dong <lidong@vivo.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sun Haiyong <sunhaiyong@loongson.cn>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lore.kernel.org/r/20240507183545.1236093-2-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jun 15, 2024
…PLES event"

This reverts commit 7d1405c.

This causes segfaults in some cases, as reported by Milian:

  ```
  sudo /usr/bin/perf record -z --call-graph dwarf -e cycles -e
  raw_syscalls:sys_enter ls
  ...
  [ perf record: Woken up 3 times to write data ]
  malloc(): invalid next size (unsorted)
  Aborted
  ```

  Backtrace with GDB + debuginfod:

  ```
  malloc(): invalid next size (unsorted)

  Thread 1 "perf" received signal SIGABRT, Aborted.
  __pthread_kill_implementation (threadid=<optimized out>, signo=signo@entry=6,
  no_tid=no_tid@entry=0) at pthread_kill.c:44
  Downloading source file /usr/src/debug/glibc/glibc/nptl/pthread_kill.c
  44            return INTERNAL_SYSCALL_ERROR_P (ret) ? INTERNAL_SYSCALL_ERRNO
  (ret) : 0;
  (gdb) bt
  #0  __pthread_kill_implementation (threadid=<optimized out>,
  signo=signo@entry=6, no_tid=no_tid@entry=0) at pthread_kill.c:44
  #1  0x00007ffff6ea8eb3 in __pthread_kill_internal (threadid=<optimized out>,
  signo=6) at pthread_kill.c:78
  #2  0x00007ffff6e50a30 in __GI_raise (sig=sig@entry=6) at ../sysdeps/posix/
  raise.c:26
  #3  0x00007ffff6e384c3 in __GI_abort () at abort.c:79
  #4  0x00007ffff6e39354 in __libc_message_impl (fmt=fmt@entry=0x7ffff6fc22ea
  "%s\n") at ../sysdeps/posix/libc_fatal.c:132
  #5  0x00007ffff6eb3085 in malloc_printerr (str=str@entry=0x7ffff6fc5850
  "malloc(): invalid next size (unsorted)") at malloc.c:5772
  #6  0x00007ffff6eb657c in _int_malloc (av=av@entry=0x7ffff6ff6ac0
  <main_arena>, bytes=bytes@entry=368) at malloc.c:4081
  #7  0x00007ffff6eb877e in __libc_calloc (n=<optimized out>,
  elem_size=<optimized out>) at malloc.c:3754
  #8  0x000055555569bdb6 in perf_session.do_write_header ()
  #9  0x00005555555a373a in __cmd_record.constprop.0 ()
  #10 0x00005555555a6846 in cmd_record ()
  #11 0x000055555564db7f in run_builtin ()
  #12 0x000055555558ed77 in main ()
  ```

  Valgrind memcheck:
  ```
  ==45136== Invalid write of size 8
  ==45136==    at 0x2B38A5: perf_event__synthesize_id_sample (in /usr/bin/perf)
  ==45136==    by 0x157069: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==  Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd
  ==45136==    at 0x4849BF3: calloc (vg_replace_malloc.c:1675)
  ==45136==    by 0x3574AB: zalloc (in /usr/bin/perf)
  ==45136==    by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==
  ==45136== Syscall param write(buf) points to unaddressable byte(s)
  ==45136==    at 0x575953D: __libc_write (write.c:26)
  ==45136==    by 0x575953D: write (write.c:24)
  ==45136==    by 0x35761F: ion (in /usr/bin/perf)
  ==45136==    by 0x357778: writen (in /usr/bin/perf)
  ==45136==    by 0x1548F7: record__write (in /usr/bin/perf)
  ==45136==    by 0x15708A: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==  Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd
  ==45136==    at 0x4849BF3: calloc (vg_replace_malloc.c:1675)
  ==45136==    by 0x3574AB: zalloc (in /usr/bin/perf)
  ==45136==    by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==
 -----

Closes: https://lore.kernel.org/linux-perf-users/23879991.0LEYPuXRzz@milian-workstation/
Reported-by: Milian Wolff <milian.wolff@kdab.com>
Tested-by: Milian Wolff <milian.wolff@kdab.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: stable@kernel.org # 6.8+
Link: https://lore.kernel.org/lkml/Zl9ksOlHJHnKM70p@x1
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jun 15, 2024
We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():

  BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:2620!
  invalid opcode: 0000 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
  RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]

With the following stack trace:

  #0  btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
  #1  btrfs_drop_extents (fs/btrfs/file.c:411:4)
  #2  log_one_extent (fs/btrfs/tree-log.c:4732:9)
  #3  btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
  #4  btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
  #5  btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
  #6  btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
  #7  btrfs_sync_file (fs/btrfs/file.c:1933:8)
  #8  vfs_fsync_range (fs/sync.c:188:9)
  #9  vfs_fsync (fs/sync.c:202:9)
  #10 do_fsync (fs/sync.c:212:9)
  #11 __do_sys_fdatasync (fs/sync.c:225:9)
  #12 __se_sys_fdatasync (fs/sync.c:223:1)
  #13 __x64_sys_fdatasync (fs/sync.c:223:1)
  #14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
  #15 do_syscall_64 (arch/x86/entry/common.c:83:7)
  #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)

So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().

This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:

  >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
  leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
  leaf 33439744 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
          item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
                  generation 7 transid 9 size 8192 nbytes 8473563889606862198
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 204 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417704.983333333 (2024-05-22 15:41:44)
                  mtime 1716417704.983333333 (2024-05-22 15:41:44)
                  otime 17592186044416.000000000 (559444-03-08 01:40:16)
          item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
                  index 195 namelen 3 name: 193
          item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 4096 ram 12288
                  extent compression 0 (none)
          item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 4096 nr 8192
          item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096
  ...

So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.

Here is the state of the filesystem tree at the time of the crash:

  >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root
  >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0))
  >>> print_extent_buffer(nodes[0])
  leaf 30425088 level 0 items 184 generation 9 owner 5
  leaf 30425088 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
  	...
          item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160
                  generation 7 transid 7 size 4096 nbytes 12288
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 6 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417703.220000000 (2024-05-22 15:41:43)
                  mtime 1716417703.220000000 (2024-05-22 15:41:43)
                  otime 1716417703.220000000 (2024-05-22 15:41:43)
          item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13
                  index 195 namelen 3 name: 193
          item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 8192 ram 12288
                  extent compression 0 (none)
          item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096

Item 5 in the log tree corresponds to item 183 in the filesystem tree,
but nothing matches item 4. Furthermore, item 183 is the last item in
the leaf.

btrfs_log_prealloc_extents() is responsible for logging prealloc extents
beyond i_size. It first truncates any previously logged prealloc extents
that start beyond i_size. Then, it walks the filesystem tree and copies
the prealloc extent items to the log tree.

If it hits the end of a leaf, then it calls btrfs_next_leaf(), which
unlocks the tree and does another search. However, while the filesystem
tree is unlocked, an ordered extent completion may modify the tree. In
particular, it may insert an extent item that overlaps with an extent
item that was already copied to the log tree.

This may manifest in several ways depending on the exact scenario,
including an EEXIST error that is silently translated to a full sync,
overlapping items in the log tree, or this crash. This particular crash
is triggered by the following sequence of events:

- Initially, the file has i_size=4k, a regular extent from 0-4k, and a
  prealloc extent beyond i_size from 4k-12k. The prealloc extent item is
  the last item in its B-tree leaf.
- The file is fsync'd, which copies its inode item and both extent items
  to the log tree.
- An xattr is set on the file, which sets the
  BTRFS_INODE_COPY_EVERYTHING flag.
- The range 4k-8k in the file is written using direct I/O. i_size is
  extended to 8k, but the ordered extent is still in flight.
- The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this
  calls copy_inode_items_to_log(), which calls
  btrfs_log_prealloc_extents().
- btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the
  filesystem tree. Since it starts before i_size, it skips it. Since it
  is the last item in its B-tree leaf, it calls btrfs_next_leaf().
- btrfs_next_leaf() unlocks the path.
- The ordered extent completion runs, which converts the 4k-8k part of
  the prealloc extent to written and inserts the remaining prealloc part
  from 8k-12k.
- btrfs_next_leaf() does a search and finds the new prealloc extent
  8k-12k.
- btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into
  the log tree. Note that it overlaps with the 4k-12k prealloc extent
  that was copied to the log tree by the first fsync.
- fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k
  extent that was written.
- This tries to drop the range 4k-8k in the log tree, which requires
  adjusting the start of the 4k-12k prealloc extent in the log tree to
  8k.
- btrfs_set_item_key_safe() sees that there is already an extent
  starting at 8k in the log tree and calls BUG().

Fix this by detecting when we're about to insert an overlapping file
extent item in the log tree and truncating the part that would overlap.

CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jun 28, 2024
The code in ocfs2_dio_end_io_write() estimates number of necessary
transaction credits using ocfs2_calc_extend_credits().  This however does
not take into account that the IO could be arbitrarily large and can
contain arbitrary number of extents.

Extent tree manipulations do often extend the current transaction but not
in all of the cases.  For example if we have only single block extents in
the tree, ocfs2_mark_extent_written() will end up calling
ocfs2_replace_extent_rec() all the time and we will never extend the
current transaction and eventually exhaust all the transaction credits if
the IO contains many single block extents.  Once that happens a
WARN_ON(jbd2_handle_buffer_credits(handle) <= 0) is triggered in
jbd2_journal_dirty_metadata() and subsequently OCFS2 aborts in response to
this error.  This was actually triggered by one of our customers on a
heavily fragmented OCFS2 filesystem.

To fix the issue make sure the transaction always has enough credits for
one extent insert before each call of ocfs2_mark_extent_written().

Heming Zhao said:

------
PANIC: "Kernel panic - not syncing: OCFS2: (device dm-1): panic forced after error"

PID: xxx  TASK: xxxx  CPU: 5  COMMAND: "SubmitThread-CA"
  #0 machine_kexec at ffffffff8c069932
  #1 __crash_kexec at ffffffff8c1338fa
  #2 panic at ffffffff8c1d69b9
  #3 ocfs2_handle_error at ffffffffc0c86c0c [ocfs2]
  #4 __ocfs2_abort at ffffffffc0c88387 [ocfs2]
  #5 ocfs2_journal_dirty at ffffffffc0c51e98 [ocfs2]
  #6 ocfs2_split_extent at ffffffffc0c27ea3 [ocfs2]
  #7 ocfs2_change_extent_flag at ffffffffc0c28053 [ocfs2]
  #8 ocfs2_mark_extent_written at ffffffffc0c28347 [ocfs2]
  #9 ocfs2_dio_end_io_write at ffffffffc0c2bef9 [ocfs2]
#10 ocfs2_dio_end_io at ffffffffc0c2c0f5 [ocfs2]
#11 dio_complete at ffffffff8c2b9fa7
#12 do_blockdev_direct_IO at ffffffff8c2bc09f
#13 ocfs2_direct_IO at ffffffffc0c2b653 [ocfs2]
#14 generic_file_direct_write at ffffffff8c1dcf14
#15 __generic_file_write_iter at ffffffff8c1dd07b
#16 ocfs2_file_write_iter at ffffffffc0c49f1f [ocfs2]
#17 aio_write at ffffffff8c2cc72e
#18 kmem_cache_alloc at ffffffff8c248dde
#19 do_io_submit at ffffffff8c2ccada
#20 do_syscall_64 at ffffffff8c004984
#21 entry_SYSCALL_64_after_hwframe at ffffffff8c8000ba

Link: https://lkml.kernel.org/r/20240617095543.6971-1-jack@suse.cz
Link: https://lkml.kernel.org/r/20240614145243.8837-1-jack@suse.cz
Fixes: c15471f ("ocfs2: fix sparse file & data ordering issue in direct io")
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Heming Zhao <heming.zhao@suse.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 12, 2024
Bos can be put with multiple unrelated dma-resv locks held. But
imported bos attempt to grab the bo dma-resv during dma-buf detach
that typically happens during cleanup. That leads to lockde splats
similar to the below and a potential ABBA deadlock.

Fix this by always taking the delayed workqueue cleanup path for
imported bos.

Requesting stable fixes from when the Xe driver was introduced,
since its usage of drm_exec and wide vm dma_resvs appear to be
the first reliable trigger of this.

[22982.116427] ============================================
[22982.116428] WARNING: possible recursive locking detected
[22982.116429] 6.10.0-rc2+ #10 Tainted: G     U  W
[22982.116430] --------------------------------------------
[22982.116430] glxgears:sh0/5785 is trying to acquire lock:
[22982.116431] ffff8c2bafa539a8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: dma_buf_detach+0x3b/0xf0
[22982.116438]
               but task is already holding lock:
[22982.116438] ffff8c2d9aba6da8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: drm_exec_lock_obj+0x49/0x2b0 [drm_exec]
[22982.116442]
               other info that might help us debug this:
[22982.116442]  Possible unsafe locking scenario:

[22982.116443]        CPU0
[22982.116444]        ----
[22982.116444]   lock(reservation_ww_class_mutex);
[22982.116445]   lock(reservation_ww_class_mutex);
[22982.116447]
                *** DEADLOCK ***

[22982.116447]  May be due to missing lock nesting notation

[22982.116448] 5 locks held by glxgears:sh0/5785:
[22982.116449]  #0: ffff8c2d9aba58c8 (&xef->vm.lock){+.+.}-{3:3}, at: xe_file_close+0xde/0x1c0 [xe]
[22982.116507]  #1: ffff8c2e28cc8480 (&vm->lock){++++}-{3:3}, at: xe_vm_close_and_put+0x161/0x9b0 [xe]
[22982.116578]  #2: ffff8c2e31982970 (&val->lock){.+.+}-{3:3}, at: xe_validation_ctx_init+0x6d/0x70 [xe]
[22982.116647]  #3: ffffacdc469478a8 (reservation_ww_class_acquire){+.+.}-{0:0}, at: xe_vma_destroy_unlocked+0x7f/0xe0 [xe]
[22982.116716]  #4: ffff8c2d9aba6da8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: drm_exec_lock_obj+0x49/0x2b0 [drm_exec]
[22982.116719]
               stack backtrace:
[22982.116720] CPU: 8 PID: 5785 Comm: glxgears:sh0 Tainted: G     U  W          6.10.0-rc2+ #10
[22982.116721] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 2001 02/01/2023
[22982.116723] Call Trace:
[22982.116724]  <TASK>
[22982.116725]  dump_stack_lvl+0x77/0xb0
[22982.116727]  __lock_acquire+0x1232/0x2160
[22982.116730]  lock_acquire+0xcb/0x2d0
[22982.116732]  ? dma_buf_detach+0x3b/0xf0
[22982.116734]  ? __lock_acquire+0x417/0x2160
[22982.116736]  __ww_mutex_lock.constprop.0+0xd0/0x13b0
[22982.116738]  ? dma_buf_detach+0x3b/0xf0
[22982.116741]  ? dma_buf_detach+0x3b/0xf0
[22982.116743]  ? ww_mutex_lock+0x2b/0x90
[22982.116745]  ww_mutex_lock+0x2b/0x90
[22982.116747]  dma_buf_detach+0x3b/0xf0
[22982.116749]  drm_prime_gem_destroy+0x2f/0x40 [drm]
[22982.116775]  xe_ttm_bo_destroy+0x32/0x220 [xe]
[22982.116818]  ? __mutex_unlock_slowpath+0x3a/0x290
[22982.116821]  drm_exec_unlock_all+0xa1/0xd0 [drm_exec]
[22982.116823]  drm_exec_fini+0x12/0xb0 [drm_exec]
[22982.116824]  xe_validation_ctx_fini+0x15/0x40 [xe]
[22982.116892]  xe_vma_destroy_unlocked+0xb1/0xe0 [xe]
[22982.116959]  xe_vm_close_and_put+0x41a/0x9b0 [xe]
[22982.117025]  ? xa_find+0xe3/0x1e0
[22982.117028]  xe_file_close+0x10a/0x1c0 [xe]
[22982.117074]  drm_file_free+0x22a/0x280 [drm]
[22982.117099]  drm_release_noglobal+0x22/0x70 [drm]
[22982.117119]  __fput+0xf1/0x2d0
[22982.117122]  task_work_run+0x59/0x90
[22982.117125]  do_exit+0x330/0xb40
[22982.117127]  do_group_exit+0x36/0xa0
[22982.117129]  get_signal+0xbd2/0xbe0
[22982.117131]  arch_do_signal_or_restart+0x3e/0x240
[22982.117134]  syscall_exit_to_user_mode+0x1e7/0x290
[22982.117137]  do_syscall_64+0xa1/0x180
[22982.117139]  ? lock_acquire+0xcb/0x2d0
[22982.117140]  ? __set_task_comm+0x28/0x1e0
[22982.117141]  ? find_held_lock+0x2b/0x80
[22982.117144]  ? __set_task_comm+0xe1/0x1e0
[22982.117145]  ? lock_release+0xca/0x290
[22982.117147]  ? __do_sys_prctl+0x245/0xab0
[22982.117149]  ? lockdep_hardirqs_on_prepare+0xde/0x190
[22982.117150]  ? syscall_exit_to_user_mode+0xb0/0x290
[22982.117152]  ? do_syscall_64+0xa1/0x180
[22982.117154]  ? __lock_acquire+0x417/0x2160
[22982.117155]  ? reacquire_held_locks+0xd1/0x1f0
[22982.117156]  ? do_user_addr_fault+0x30c/0x790
[22982.117158]  ? lock_acquire+0xcb/0x2d0
[22982.117160]  ? find_held_lock+0x2b/0x80
[22982.117162]  ? do_user_addr_fault+0x357/0x790
[22982.117163]  ? lock_release+0xca/0x290
[22982.117164]  ? do_user_addr_fault+0x361/0x790
[22982.117166]  ? trace_hardirqs_off+0x4b/0xc0
[22982.117168]  ? clear_bhb_loop+0x45/0xa0
[22982.117170]  ? clear_bhb_loop+0x45/0xa0
[22982.117172]  ? clear_bhb_loop+0x45/0xa0
[22982.117174]  entry_SYSCALL_64_after_hwframe+0x76/0x7e
[22982.117176] RIP: 0033:0x7f943d267169
[22982.117192] Code: Unable to access opcode bytes at 0x7f943d26713f.
[22982.117193] RSP: 002b:00007f9430bffc80 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca
[22982.117195] RAX: fffffffffffffe00 RBX: 0000000000000000 RCX: 00007f943d267169
[22982.117196] RDX: 0000000000000000 RSI: 0000000000000189 RDI: 00005622f89579d0
[22982.117197] RBP: 00007f9430bffcb0 R08: 0000000000000000 R09: 00000000ffffffff
[22982.117198] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[22982.117199] R13: 0000000000000000 R14: 0000000000000000 R15: 00005622f89579d0
[22982.117202]  </TASK>

Fixes: dd08ebf ("drm/xe: Introduce a new DRM driver for Intel GPUs")
Cc: Christian König <christian.koenig@amd.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: dri-devel@lists.freedesktop.org
Cc: intel-xe@lists.freedesktop.org
Cc: <stable@vger.kernel.org> # v6.8+
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Reviewed-by: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Christian König <christian.koenig@amd.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240628153848.4989-1-thomas.hellstrom@linux.intel.com
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Aug 12, 2024
In commit 15d9da3 ("binder: use bitmap for faster descriptor
lookup"), it was incorrectly assumed that references to the context
manager node should always get descriptor zero assigned to them.

However, if the context manager dies and a new process takes its place,
then assigning descriptor zero to the new context manager might lead to
collisions, as there could still be references to the older node. This
issue was reported by syzbot with the following trace:

  kernel BUG at drivers/android/binder.c:1173!
  Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
  Modules linked in:
  CPU: 1 PID: 447 Comm: binder-util Not tainted 6.10.0-rc6-00348-g31643d84b8c3 #10
  Hardware name: linux,dummy-virt (DT)
  pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
  pc : binder_inc_ref_for_node+0x500/0x544
  lr : binder_inc_ref_for_node+0x1e4/0x544
  sp : ffff80008112b940
  x29: ffff80008112b940 x28: ffff0e0e40310780 x27: 0000000000000000
  x26: 0000000000000001 x25: ffff0e0e40310738 x24: ffff0e0e4089ba34
  x23: ffff0e0e40310b00 x22: ffff80008112bb50 x21: ffffaf7b8f246970
  x20: ffffaf7b8f773f08 x19: ffff0e0e4089b800 x18: 0000000000000000
  x17: 0000000000000000 x16: 0000000000000000 x15: 000000002de4aa60
  x14: 0000000000000000 x13: 2de4acf000000000 x12: 0000000000000020
  x11: 0000000000000018 x10: 0000000000000020 x9 : ffffaf7b90601000
  x8 : ffff0e0e48739140 x7 : 0000000000000000 x6 : 000000000000003f
  x5 : ffff0e0e40310b28 x4 : 0000000000000000 x3 : ffff0e0e40310720
  x2 : ffff0e0e40310728 x1 : 0000000000000000 x0 : ffff0e0e40310710
  Call trace:
   binder_inc_ref_for_node+0x500/0x544
   binder_transaction+0xf68/0x2620
   binder_thread_write+0x5bc/0x139c
   binder_ioctl+0xef4/0x10c8
  [...]

This patch adds back the previous behavior of assigning the next
non-zero descriptor if references to previous context managers still
exist. It amends both strategies, the newer dbitmap code and also the
legacy slow_desc_lookup_olocked(), by allowing them to start looking
for available descriptors at a given offset.

Fixes: 15d9da3 ("binder: use bitmap for faster descriptor lookup")
Cc: stable@vger.kernel.org
Reported-and-tested-by: syzbot+3dae065ca76952a67257@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000c1c0a0061d1e6979@google.com/
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Carlos Llamas <cmllamas@google.com>
Link: https://lore.kernel.org/r/20240722150512.4192473-1-cmllamas@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Aug 27, 2024
Tariq Toukan says:

====================
mlx5 misc patches 2024-08-08

This patchset contains multiple enhancements from the team to the mlx5
core and Eth drivers.

Patch #1 by Chris bumps a defined value to permit more devices doing TC
offloads.

Patch #2 by Jianbo adds an IPsec fast-path optimization to replace the
slow async handling.

Patches #3 and #4 by Jianbo add TC offload support for complicated rules
to overcome firmware limitation.

Patch #5 by Gal unifies the access macro to advertised/supported link
modes.

Patches #6 to #9 by Gal adds extack messages in ethtool ops to replace
prints to the kernel log.

Patch #10 by Cosmin switches to using 'update' verb instead of 'replace'
to better reflect the operation.

Patch #11 by Cosmin exposes an update connection tracking operation to
replace the assumed delete+add implementaiton.
====================

Link: https://patch.msgid.link/20240808055927.2059700-1-tariqt@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 6, 2024
A sysfs reader can race with a device reset or removal, attempting to
read device state when the device is not actually present. eg:

     [exception RIP: qed_get_current_link+17]
  #8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede]
  #9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3
 #10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4
 #11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300
 #12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c
 #13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b
 #14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3
 #15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1
 #16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f
 #17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb

 crash> struct net_device.state ffff9a9d21336000
    state = 5,

state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100).
The device is not present, note lack of __LINK_STATE_PRESENT (0b10).

This is the same sort of panic as observed in commit 4224cfd
("net-sysfs: add check for netdevice being present to speed_show").

There are many other callers of __ethtool_get_link_ksettings() which
don't have a device presence check.

Move this check into ethtool to protect all callers.

Fixes: d519e17 ("net: export device speed and duplex via sysfs")
Fixes: 4224cfd ("net-sysfs: add check for netdevice being present to speed_show")
Signed-off-by: Jamie Bainbridge <jamie.bainbridge@gmail.com>
Link: https://patch.msgid.link/8bae218864beaa44ed01628140475b9bf641c5b0.1724393671.git.jamie.bainbridge@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 13, 2024
Daniel Machon says:

====================
net: microchip: add FDMA library and use it for Sparx5

This patch series is the first of a 2-part series, that adds a new
common FDMA library for Microchip switch chips Sparx5 and lan966x. These
chips share the same FDMA engine, and as such will benefit from a
common library with a common implementation.  This also has the benefit
of removing a lot open-coded bookkeeping and duplicate code for the two
drivers.

Additionally, upstreaming efforts for a third chip, lan969x, will begin
in the near future. This chip will use the new library too.

In this first series, the FDMA library is introduced and used by the
Sparx5 switch driver.

 ###################
 # Example of use: #
 ###################

- Initialize the rx and tx fdma structs with values for: number of
  DCB's, number of DB's, channel ID, DB size (data buffer size), and
  total size of the requested memory. Also provide two callbacks:
  nextptr_cb() and dataptr_cb() for getting the nextptr and dataptr.

- Allocate memory using fdma_alloc_phys() or fdma_alloc_coherent().

- Initialize the DCB's with fdma_dcb_init().

- Add new DCB's with fdma_dcb_add().

- Free memory with fdma_free_phys() or fdma_free_coherent().

 #####################
 # Patch  breakdown: #
 #####################

Patch #1:  introduces library and selects it for Sparx5.

Patch #2:  includes the fdma_api.h header and removes old symbols.

Patch #3:  replaces old rx and tx variables with equivalent ones from the
           fdma struct. Only the variables that can be changed without
           breaking traffic is changed in this patch.

Patch #4:  uses the library for allocation of rx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #5:  uses the library for adding DCB's in the rx path.

Patch #6:  uses the library for freeing rx buffers.

Patch #7:  uses the library helpers in the rx path.

Patch #8:  uses the library for allocation of tx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #9:  uses the library for adding DCB's in the tx path.

Patch #10: uses the library helpers in the tx path.

Patch #11: ditches the existing linked list for storing buffer addresses,
           and instead uses offsets into contiguous memory.

Patch #12: modifies existing rx and tx functions to be direction
           independent.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 13, 2024
…rnel/git/netfilter/nf-next

Pablo Neira Ayuso says:

====================
Netfilter updates for net-next

The following patchset contains Netfilter updates for net-next:

Patch #1 adds ctnetlink support for kernel side filtering for
	 deletions, from Changliang Wu.

Patch #2 updates nft_counter support to Use u64_stats_t,
	 from Sebastian Andrzej Siewior.

Patch #3 uses kmemdup_array() in all xtables frontends,
	 from Yan Zhen.

Patch #4 is a oneliner to use ERR_CAST() in nf_conntrack instead
	 opencoded casting, from Shen Lichuan.

Patch #5 removes unused argument in nftables .validate interface,
	 from Florian Westphal.

Patch #6 is a oneliner to correct a typo in nftables kdoc,
	 from Simon Horman.

Patch #7 fixes missing kdoc in nftables, also from Simon.

Patch #8 updates nftables to handle timeout less than CONFIG_HZ.

Patch #9 rejects element expiration if timeout is zero,
	 otherwise it is silently ignored.

Patch #10 disallows element expiration larger than timeout.

Patch #11 removes unnecessary READ_ONCE annotation while mutex is held.

Patch #12 adds missing READ_ONCE/WRITE_ONCE annotation in dynset.

Patch #13 annotates data-races around element expiration.

Patch #14 allocates timeout and expiration in one single set element
	  extension, they are tighly couple, no reason to keep them
	  separated anymore.

Patch #15 updates nftables to interpret zero timeout element as never
	  times out. Note that it is already possible to declare sets
	  with elements that never time out but this generalizes to all
	  kind of set with timeouts.

Patch #16 supports for element timeout and expiration updates.

* tag 'nf-next-24-09-06' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next:
  netfilter: nf_tables: set element timeout update support
  netfilter: nf_tables: zero timeout means element never times out
  netfilter: nf_tables: consolidate timeout extension for elements
  netfilter: nf_tables: annotate data-races around element expiration
  netfilter: nft_dynset: annotate data-races around set timeout
  netfilter: nf_tables: remove annotation to access set timeout while holding lock
  netfilter: nf_tables: reject expiration higher than timeout
  netfilter: nf_tables: reject element expiration with no timeout
  netfilter: nf_tables: elements with timeout below CONFIG_HZ never expire
  netfilter: nf_tables: Add missing Kernel doc
  netfilter: nf_tables: Correct spelling in nf_tables.h
  netfilter: nf_tables: drop unused 3rd argument from validate callback ops
  netfilter: conntrack: Convert to use ERR_CAST()
  netfilter: Use kmemdup_array instead of kmemdup for multiple allocation
  netfilter: nft_counter: Use u64_stats_t for statistic.
  netfilter: ctnetlink: support CTA_FILTER for flush
====================

Link: https://patch.msgid.link/20240905232920.5481-1-pablo@netfilter.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 13, 2024
Daniel Machon says:

====================
net: lan966x: use the newly introduced FDMA library

This patch series is the second of a 2-part series [1], that adds a new
common FDMA library for Microchip switch chips Sparx5 and lan966x. These
chips share the same FDMA engine, and as such will benefit from a common
library with a common implementation.  This also has the benefit of
removing a lot of open-coded bookkeeping and duplicate code for the two
drivers.

In this second series, the FDMA library will be taken into use by the
lan966x switch driver.

 ###################
 # Example of use: #
 ###################

- Initialize the rx and tx fdma structs with values for: number of
  DCB's, number of DB's, channel ID, DB size (data buffer size), and
  total size of the requested memory. Also provide two callbacks:
  nextptr_cb() and dataptr_cb() for getting the nextptr and dataptr.

- Allocate memory using fdma_alloc_phys() or fdma_alloc_coherent().

- Initialize the DCB's with fdma_dcb_init().

- Add new DCB's with fdma_dcb_add().

- Free memory with fdma_free_phys() or fdma_free_coherent().

 #####################
 # Patch  breakdown: #
 #####################

Patch #1:  select FDMA library for lan966x.

Patch #2:  includes the fdma_api.h header and removes old symbols.

Patch #3:  replaces old rx and tx variables with equivalent ones from the
           fdma struct. Only the variables that can be changed without
           breaking traffic is changed in this patch.

Patch #4:  uses the library for allocation of rx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #5:  uses the library for adding DCB's in the rx path.

Patch #6:  uses the library for freeing rx buffers.

Patch #7:  uses the library for allocation of tx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #8:  uses the library for adding DCB's in the tx path.

Patch #9:  uses the library helpers in the tx path.

Patch #10: ditch last_in_use variable and use library instead.

Patch #11: uses library helpers throughout.

Patch #12: refactor lan966x_fdma_reload() function.

[1] https://lore.kernel.org/netdev/20240902-fdma-sparx5-v1-0-1e7d5e5a9f34@microchip.com/

Signed-off-by: Daniel Machon <daniel.machon@microchip.com>
====================

Link: https://patch.msgid.link/20240905-fdma-lan966x-v1-0-e083f8620165@microchip.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 23, 2024
iter_finish_branch_entry() doesn't put the branch_info from/to map
elements creating memory leaks. This can be seen with:

```
$ perf record -e cycles -b perf test -w noploop
$ perf report -D
...
Direct leak of 984344 byte(s) in 123043 object(s) allocated from:
    #0 0x7fb2654f3bd7 in malloc libsanitizer/asan/asan_malloc_linux.cpp:69
    #1 0x564d3400d10b in map__get util/map.h:186
    #2 0x564d3400d10b in ip__resolve_ams util/machine.c:1981
    #3 0x564d34014d81 in sample__resolve_bstack util/machine.c:2151
    #4 0x564d34094790 in iter_prepare_branch_entry util/hist.c:898
    #5 0x564d34098fa4 in hist_entry_iter__add util/hist.c:1238
    #6 0x564d33d1f0c7 in process_sample_event tools/perf/builtin-report.c:334
    #7 0x564d34031eb7 in perf_session__deliver_event util/session.c:1655
    #8 0x564d3403ba52 in do_flush util/ordered-events.c:245
    #9 0x564d3403ba52 in __ordered_events__flush util/ordered-events.c:324
    #10 0x564d3402d32e in perf_session__process_user_event util/session.c:1708
    #11 0x564d34032480 in perf_session__process_event util/session.c:1877
    #12 0x564d340336ad in reader__read_event util/session.c:2399
    #13 0x564d34033fdc in reader__process_events util/session.c:2448
    #14 0x564d34033fdc in __perf_session__process_events util/session.c:2495
    #15 0x564d34033fdc in perf_session__process_events util/session.c:2661
    #16 0x564d33d27113 in __cmd_report tools/perf/builtin-report.c:1065
    #17 0x564d33d27113 in cmd_report tools/perf/builtin-report.c:1805
    #18 0x564d33e0ccb7 in run_builtin tools/perf/perf.c:350
    #19 0x564d33e0d45e in handle_internal_command tools/perf/perf.c:403
    #20 0x564d33cdd827 in run_argv tools/perf/perf.c:447
    #21 0x564d33cdd827 in main tools/perf/perf.c:561
...
```

Clearing up the map_symbols properly creates maps reference count
issues so resolve those. Resolving this issue doesn't improve peak
heap consumption for the test above.

Committer testing:

  $ sudo dnf install libasan
  $ make -k CORESIGHT=1 EXTRA_CFLAGS="-fsanitize=address" CC=clang O=/tmp/build/$(basename $PWD)/ -C tools/perf install-bin

Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sun Haiyong <sunhaiyong@loongson.cn>
Cc: Yanteng Si <siyanteng@loongson.cn>
Link: https://lore.kernel.org/r/20240807065136.1039977-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 23, 2024
AddressSanitizer found a use-after-free bug in the symbol code which
manifested as 'perf top' segfaulting.

  ==1238389==ERROR: AddressSanitizer: heap-use-after-free on address 0x60b00c48844b at pc 0x5650d8035961 bp 0x7f751aaecc90 sp 0x7f751aaecc80
  READ of size 1 at 0x60b00c48844b thread T193
      #0 0x5650d8035960 in _sort__sym_cmp util/sort.c:310
      #1 0x5650d8043744 in hist_entry__cmp util/hist.c:1286
      #2 0x5650d8043951 in hists__findnew_entry util/hist.c:614
      #3 0x5650d804568f in __hists__add_entry util/hist.c:754
      #4 0x5650d8045bf9 in hists__add_entry util/hist.c:772
      #5 0x5650d8045df1 in iter_add_single_normal_entry util/hist.c:997
      #6 0x5650d8043326 in hist_entry_iter__add util/hist.c:1242
      #7 0x5650d7ceeefe in perf_event__process_sample /home/matt/src/linux/tools/perf/builtin-top.c:845
      #8 0x5650d7ceeefe in deliver_event /home/matt/src/linux/tools/perf/builtin-top.c:1208
      #9 0x5650d7fdb51b in do_flush util/ordered-events.c:245
      #10 0x5650d7fdb51b in __ordered_events__flush util/ordered-events.c:324
      #11 0x5650d7ced743 in process_thread /home/matt/src/linux/tools/perf/builtin-top.c:1120
      #12 0x7f757ef1f133 in start_thread nptl/pthread_create.c:442
      #13 0x7f757ef9f7db in clone3 ../sysdeps/unix/sysv/linux/x86_64/clone3.S:81

When updating hist maps it's also necessary to update the hist symbol
reference because the old one gets freed in map__put().

While this bug was probably introduced with 5c24b67 ("perf
tools: Replace map->referenced & maps->removed_maps with map->refcnt"),
the symbol objects were leaked until c087e94 ("perf machine:
Fix refcount usage when processing PERF_RECORD_KSYMBOL") was merged so
the bug was masked.

Fixes: c087e94 ("perf machine: Fix refcount usage when processing PERF_RECORD_KSYMBOL")
Reported-by: Yunzhao Li <yunzhao@cloudflare.com>
Signed-off-by: Matt Fleming (Cloudflare) <matt@readmodwrite.com>
Cc: Ian Rogers <irogers@google.com>
Cc: kernel-team@cloudflare.com
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Riccardo Mancini <rickyman7@gmail.com>
Cc: stable@vger.kernel.org # v5.13+
Link: https://lore.kernel.org/r/20240815142212.3834625-1-matt@readmodwrite.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 23, 2024
The fields in the hist_entry are filled on-demand which means they only
have meaningful values when relevant sort keys are used.

So if neither of 'dso' nor 'sym' sort keys are used, the map/symbols in
the hist entry can be garbage.  So it shouldn't access it
unconditionally.

I got a segfault, when I wanted to see cgroup profiles.

  $ sudo perf record -a --all-cgroups --synth=cgroup true

  $ sudo perf report -s cgroup

  Program received signal SIGSEGV, Segmentation fault.
  0x00005555557a8d90 in map__dso (map=0x0) at util/map.h:48
  48		return RC_CHK_ACCESS(map)->dso;
  (gdb) bt
  #0  0x00005555557a8d90 in map__dso (map=0x0) at util/map.h:48
  #1  0x00005555557aa39b in map__load (map=0x0) at util/map.c:344
  #2  0x00005555557aa592 in map__find_symbol (map=0x0, addr=140736115941088) at util/map.c:385
  #3  0x00005555557ef000 in hists__findnew_entry (hists=0x555556039d60, entry=0x7fffffffa4c0, al=0x7fffffffa8c0, sample_self=true)
      at util/hist.c:644
  #4  0x00005555557ef61c in __hists__add_entry (hists=0x555556039d60, al=0x7fffffffa8c0, sym_parent=0x0, bi=0x0, mi=0x0, ki=0x0,
      block_info=0x0, sample=0x7fffffffaa90, sample_self=true, ops=0x0) at util/hist.c:761
  #5  0x00005555557ef71f in hists__add_entry (hists=0x555556039d60, al=0x7fffffffa8c0, sym_parent=0x0, bi=0x0, mi=0x0, ki=0x0,
      sample=0x7fffffffaa90, sample_self=true) at util/hist.c:779
  #6  0x00005555557f00fb in iter_add_single_normal_entry (iter=0x7fffffffa900, al=0x7fffffffa8c0) at util/hist.c:1015
  #7  0x00005555557f09a7 in hist_entry_iter__add (iter=0x7fffffffa900, al=0x7fffffffa8c0, max_stack_depth=127, arg=0x7fffffffbce0)
      at util/hist.c:1260
  #8  0x00005555555ba7ce in process_sample_event (tool=0x7fffffffbce0, event=0x7ffff7c14128, sample=0x7fffffffaa90, evsel=0x555556039ad0,
      machine=0x5555560388e8) at builtin-report.c:334
  #9  0x00005555557b30c8 in evlist__deliver_sample (evlist=0x555556039010, tool=0x7fffffffbce0, event=0x7ffff7c14128,
      sample=0x7fffffffaa90, evsel=0x555556039ad0, machine=0x5555560388e8) at util/session.c:1232
  #10 0x00005555557b32bc in machines__deliver_event (machines=0x5555560388e8, evlist=0x555556039010, event=0x7ffff7c14128,
      sample=0x7fffffffaa90, tool=0x7fffffffbce0, file_offset=110888, file_path=0x555556038ff0 "perf.data") at util/session.c:1271
  #11 0x00005555557b3848 in perf_session__deliver_event (session=0x5555560386d0, event=0x7ffff7c14128, tool=0x7fffffffbce0,
      file_offset=110888, file_path=0x555556038ff0 "perf.data") at util/session.c:1354
  #12 0x00005555557affaf in ordered_events__deliver_event (oe=0x555556038e60, event=0x555556135aa0) at util/session.c:132
  #13 0x00005555557bb605 in do_flush (oe=0x555556038e60, show_progress=false) at util/ordered-events.c:245
  #14 0x00005555557bb95c in __ordered_events__flush (oe=0x555556038e60, how=OE_FLUSH__ROUND, timestamp=0) at util/ordered-events.c:324
  #15 0x00005555557bba46 in ordered_events__flush (oe=0x555556038e60, how=OE_FLUSH__ROUND) at util/ordered-events.c:342
  #16 0x00005555557b1b3b in perf_event__process_finished_round (tool=0x7fffffffbce0, event=0x7ffff7c15bb8, oe=0x555556038e60)
      at util/session.c:780
  #17 0x00005555557b3b27 in perf_session__process_user_event (session=0x5555560386d0, event=0x7ffff7c15bb8, file_offset=117688,
      file_path=0x555556038ff0 "perf.data") at util/session.c:1406

As you can see the entry->ms.map was NULL even if he->ms.map has a
value.  This is because 'sym' sort key is not given, so it cannot assume
whether he->ms.sym and entry->ms.sym is the same.  I only checked the
'sym' sort key here as it implies 'dso' behavior (so maps are the same).

Fixes: ac01c8c ("perf hist: Update hist symbol when updating maps")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Matt Fleming <matt@readmodwrite.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: https://lore.kernel.org/r/20240826221045.1202305-2-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Oct 15, 2024
Attaching SST PCI device to VM causes "BUG: KASAN: slab-out-of-bounds".
kasan report:
[   19.411889] ==================================================================
[   19.413702] BUG: KASAN: slab-out-of-bounds in _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[   19.415634] Read of size 8 at addr ffff888829e65200 by task cpuhp/16/113
[   19.417368]
[   19.418627] CPU: 16 PID: 113 Comm: cpuhp/16 Tainted: G            E      6.9.0 #10
[   19.420435] Hardware name: VMware, Inc. VMware20,1/440BX Desktop Reference Platform, BIOS VMW201.00V.20192059.B64.2207280713 07/28/2022
[   19.422687] Call Trace:
[   19.424091]  <TASK>
[   19.425448]  dump_stack_lvl+0x5d/0x80
[   19.426963]  ? _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[   19.428694]  print_report+0x19d/0x52e
[   19.430206]  ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[   19.431837]  ? _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[   19.433539]  kasan_report+0xf0/0x170
[   19.435019]  ? _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[   19.436709]  _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[   19.438379]  ? __pfx_sched_clock_cpu+0x10/0x10
[   19.439910]  isst_if_cpu_online+0x406/0x58f [isst_if_common]
[   19.441573]  ? __pfx_isst_if_cpu_online+0x10/0x10 [isst_if_common]
[   19.443263]  ? ttwu_queue_wakelist+0x2c1/0x360
[   19.444797]  cpuhp_invoke_callback+0x221/0xec0
[   19.446337]  cpuhp_thread_fun+0x21b/0x610
[   19.447814]  ? __pfx_cpuhp_thread_fun+0x10/0x10
[   19.449354]  smpboot_thread_fn+0x2e7/0x6e0
[   19.450859]  ? __pfx_smpboot_thread_fn+0x10/0x10
[   19.452405]  kthread+0x29c/0x350
[   19.453817]  ? __pfx_kthread+0x10/0x10
[   19.455253]  ret_from_fork+0x31/0x70
[   19.456685]  ? __pfx_kthread+0x10/0x10
[   19.458114]  ret_from_fork_asm+0x1a/0x30
[   19.459573]  </TASK>
[   19.460853]
[   19.462055] Allocated by task 1198:
[   19.463410]  kasan_save_stack+0x30/0x50
[   19.464788]  kasan_save_track+0x14/0x30
[   19.466139]  __kasan_kmalloc+0xaa/0xb0
[   19.467465]  __kmalloc+0x1cd/0x470
[   19.468748]  isst_if_cdev_register+0x1da/0x350 [isst_if_common]
[   19.470233]  isst_if_mbox_init+0x108/0xff0 [isst_if_mbox_msr]
[   19.471670]  do_one_initcall+0xa4/0x380
[   19.472903]  do_init_module+0x238/0x760
[   19.474105]  load_module+0x5239/0x6f00
[   19.475285]  init_module_from_file+0xd1/0x130
[   19.476506]  idempotent_init_module+0x23b/0x650
[   19.477725]  __x64_sys_finit_module+0xbe/0x130
[   19.476506]  idempotent_init_module+0x23b/0x650
[   19.477725]  __x64_sys_finit_module+0xbe/0x130
[   19.478920]  do_syscall_64+0x82/0x160
[   19.480036]  entry_SYSCALL_64_after_hwframe+0x76/0x7e
[   19.481292]
[   19.482205] The buggy address belongs to the object at ffff888829e65000
 which belongs to the cache kmalloc-512 of size 512
[   19.484818] The buggy address is located 0 bytes to the right of
 allocated 512-byte region [ffff888829e65000, ffff888829e65200)
[   19.487447]
[   19.488328] The buggy address belongs to the physical page:
[   19.489569] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888829e60c00 pfn:0x829e60
[   19.491140] head: order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0
[   19.492466] anon flags: 0x57ffffc0000840(slab|head|node=1|zone=2|lastcpupid=0x1fffff)
[   19.493914] page_type: 0xffffffff()
[   19.494988] raw: 0057ffffc0000840 ffff88810004cc80 0000000000000000 0000000000000001
[   19.496451] raw: ffff888829e60c00 0000000080200018 00000001ffffffff 0000000000000000
[   19.497906] head: 0057ffffc0000840 ffff88810004cc80 0000000000000000 0000000000000001
[   19.499379] head: ffff888829e60c00 0000000080200018 00000001ffffffff 0000000000000000
[   19.500844] head: 0057ffffc0000003 ffffea0020a79801 ffffea0020a79848 00000000ffffffff
[   19.502316] head: 0000000800000000 0000000000000000 00000000ffffffff 0000000000000000
[   19.503784] page dumped because: kasan: bad access detected
[   19.505058]
[   19.505970] Memory state around the buggy address:
[   19.507172]  ffff888829e65100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[   19.508599]  ffff888829e65180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[   19.510013] >ffff888829e65200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[   19.510014]                    ^
[   19.510016]  ffff888829e65280: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[   19.510018]  ffff888829e65300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[   19.515367] ==================================================================

The reason for this error is physical_package_ids assigned by VMware VMM
are not continuous and have gaps. This will cause value returned by
topology_physical_package_id() to be more than topology_max_packages().

Here the allocation uses topology_max_packages(). The call to
topology_max_packages() returns maximum logical package ID not physical
ID. Hence use topology_logical_package_id() instead of
topology_physical_package_id().

Fixes: 9a1aac8 ("platform/x86: ISST: PUNIT device mapping with Sub-NUMA clustering")
Cc: stable@vger.kernel.org
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Zach Wade <zachwade.k@gmail.com>
Link: https://lore.kernel.org/r/20240923144508.1764-1-zachwade.k@gmail.com
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Nov 1, 2024
Fix __hci_cmd_sync_sk() to return not NULL for unknown opcodes.

__hci_cmd_sync_sk() returns NULL if a command returns a status event.
However, it also returns NULL where an opcode doesn't exist in the
hci_cc table because hci_cmd_complete_evt() assumes status = skb->data[0]
for unknown opcodes.
This leads to null-ptr-deref in cmd_sync for HCI_OP_READ_LOCAL_CODECS as
there is no hci_cc for HCI_OP_READ_LOCAL_CODECS, which always assumes
status = skb->data[0].

KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077]
CPU: 1 PID: 2000 Comm: kworker/u9:5 Not tainted 6.9.0-ga6bcb805883c-dirty #10
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: hci7 hci_power_on
RIP: 0010:hci_read_supported_codecs+0xb9/0x870 net/bluetooth/hci_codec.c:138
Code: 08 48 89 ef e8 b8 c1 8f fd 48 8b 75 00 e9 96 00 00 00 49 89 c6 48 ba 00 00 00 00 00 fc ff df 4c 8d 60 70 4c 89 e3 48 c1 eb 03 <0f> b6 04 13 84 c0 0f 85 82 06 00 00 41 83 3c 24 02 77 0a e8 bf 78
RSP: 0018:ffff888120bafac8 EFLAGS: 00010212
RAX: 0000000000000000 RBX: 000000000000000e RCX: ffff8881173f0040
RDX: dffffc0000000000 RSI: ffffffffa58496c0 RDI: ffff88810b9ad1e4
RBP: ffff88810b9ac000 R08: ffffffffa77882a7 R09: 1ffffffff4ef1054
R10: dffffc0000000000 R11: fffffbfff4ef1055 R12: 0000000000000070
R13: 0000000000000000 R14: 0000000000000000 R15: ffff88810b9ac000
FS:  0000000000000000(0000) GS:ffff8881f6c00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6ddaa3439e CR3: 0000000139764003 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
 <TASK>
 hci_read_local_codecs_sync net/bluetooth/hci_sync.c:4546 [inline]
 hci_init_stage_sync net/bluetooth/hci_sync.c:3441 [inline]
 hci_init4_sync net/bluetooth/hci_sync.c:4706 [inline]
 hci_init_sync net/bluetooth/hci_sync.c:4742 [inline]
 hci_dev_init_sync net/bluetooth/hci_sync.c:4912 [inline]
 hci_dev_open_sync+0x19a9/0x2d30 net/bluetooth/hci_sync.c:4994
 hci_dev_do_open net/bluetooth/hci_core.c:483 [inline]
 hci_power_on+0x11e/0x560 net/bluetooth/hci_core.c:1015
 process_one_work kernel/workqueue.c:3267 [inline]
 process_scheduled_works+0x8ef/0x14f0 kernel/workqueue.c:3348
 worker_thread+0x91f/0xe50 kernel/workqueue.c:3429
 kthread+0x2cb/0x360 kernel/kthread.c:388
 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147
 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

Fixes: abfeea4 ("Bluetooth: hci_sync: Convert MGMT_OP_START_DISCOVERY")

Signed-off-by: Sungwoo Kim <iam@sung-woo.kim>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Nov 4, 2024
Petr Machata says:

====================
selftests: net: Introduce deferred commands

Recently, a defer helper was added to Python selftests. The idea is to keep
cleanup commands close to their dirtying counterparts, thereby making it
more transparent what is cleaning up what, making it harder to miss a
cleanup, and make the whole cleanup business exception safe. All these
benefits are applicable to bash as well, exception safety can be
interpreted in terms of safety vs. a SIGINT.

This patchset therefore introduces a framework of several helpers that
serve to schedule cleanups in bash selftests.

- Patch #1 has more details about the primitives being introduced.
  Patch #2 adds a fallback cleanup() function to lib.sh, because ideally
  selftests wouldn't need to introduce a dedicated cleanup function at all.

- Patch #3 adds a parameter to stop_traffic(), which makes it possible to
  start other background processes after the traffic is started without
  confusing the cleanup.

- Patches #4 to #10 convert a number of selftests.

  The goal was to convert all tests that use start_traffic / stop_traffic
  to the defer framework. Leftover traffic generators are a particularly
  painful sort of a missed cleanup. Normal unfinished cleanups can usually
  be cleaned up simply by rerunning the test and interrupting it early to
  let the cleanups run again / in full. This does not work with
  stop_traffic, because it is only issued at the end of the test case that
  starts the traffic. At the same time, leftover traffic generators
  influence follow-up test runs, and are hard to notice.

  The tests were however converted whole-sale, not just their traffic bits.
  Thus they form a proof of concept of the defer framework.
====================

Link: https://patch.msgid.link/cover.1729157566.git.petrm@nvidia.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Nov 4, 2024
Daniel Machon says:

====================
net: sparx5: add support for lan969x switch device

== Description:

This series is the second of a multi-part series, that prepares and adds
support for the new lan969x switch driver.

The upstreaming efforts is split into multiple series (might change a
bit as we go along):

        1) Prepare the Sparx5 driver for lan969x (merged)

    --> 2) add support lan969x (same basic features as Sparx5
           provides excl. FDMA and VCAP).

        3) Add support for lan969x VCAP, FDMA and RGMII

== Lan969x in short:

The lan969x Ethernet switch family [1] provides a rich set of
switching features and port configurations (up to 30 ports) from 10Mbps
to 10Gbps, with support for RGMII, SGMII, QSGMII, USGMII, and USXGMII,
ideal for industrial & process automation infrastructure applications,
transport, grid automation, power substation automation, and ring &
intra-ring topologies. The LAN969x family is hardware and software
compatible and scalable supporting 46Gbps to 102Gbps switch bandwidths.

== Preparing Sparx5 for lan969x:

The main preparation work for lan969x has already been merged [1].

After this series is applied, lan969x will have the same functionality
as Sparx5, except for VCAP and FDMA support. QoS features that requires
the VCAP (e.g. PSFP, port mirroring) will obviously not work until VCAP
support is added later.

== Patch breakdown:

Patch #1-#4  do some preparation work for lan969x

Patch #5     adds new registers required by lan969x

Patch #6     adds initial match data for all lan969x targets

Patch #7     defines the lan969x register differences

Patch #8     adds lan969x constants to match data

Patch #9     adds some lan969x ops in bulk

Patch #10    adds PTP function to ops

Patch #11    adds lan969x_calendar.c for calculating the calendar

Patch #12    makes additional use of the is_sparx5() macro to branch out
             in certain places.

Patch #13    documents lan969x in the dt-bindings

Patch #14    adds lan969x compatible string to sparx5 driver

Patch #15    introduces new concept of per-target features

[1] https://lore.kernel.org/netdev/20241004-b4-sparx5-lan969x-switch-driver-v2-0-d3290f581663@microchip.com/

v1: https://lore.kernel.org/20241021-sparx5-lan969x-switch-driver-2-v1-0-c8c49ef21e0f@microchip.com
====================

Link: https://patch.msgid.link/20241024-sparx5-lan969x-switch-driver-2-v2-0-a0b5fae88a0f@microchip.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Dec 15, 2024
syzkaller reported a warning in __sk_skb_reason_drop().

Commit 61b95c7 ("net: ip: make ip_route_input_rcu() return
drop reasons") missed a path where -EINVAL is returned.

Then, the cited commit started to trigger the warning with the
invalid error.

Let's fix it by returning SKB_DROP_REASON_NOT_SPECIFIED.

[0]:
WARNING: CPU: 0 PID: 10 at net/core/skbuff.c:1216 __sk_skb_reason_drop net/core/skbuff.c:1216 [inline]
WARNING: CPU: 0 PID: 10 at net/core/skbuff.c:1216 sk_skb_reason_drop+0x97/0x1b0 net/core/skbuff.c:1241
Modules linked in:
CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.12.0-10686-gbb18265c3aba #10 1c308307628619808b5a4a0495c4aab5637b0551
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Workqueue: wg-crypt-wg2 wg_packet_decrypt_worker
RIP: 0010:__sk_skb_reason_drop net/core/skbuff.c:1216 [inline]
RIP: 0010:sk_skb_reason_drop+0x97/0x1b0 net/core/skbuff.c:1241
Code: 5d 41 5c 41 5d 41 5e e9 e7 9e 95 fd e8 e2 9e 95 fd 31 ff 44 89 e6 e8 58 a1 95 fd 45 85 e4 0f 85 a2 00 00 00 e8 ca 9e 95 fd 90 <0f> 0b 90 e8 c1 9e 95 fd 44 89 e6 bf 01 00 00 00 e8 34 a1 95 fd 41
RSP: 0018:ffa0000000007650 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 000000000000ffff RCX: ffffffff83bc3592
RDX: ff110001002a0000 RSI: ffffffff83bc34d6 RDI: 0000000000000007
RBP: ff11000109ee85f0 R08: 0000000000000001 R09: ffe21c00213dd0da
R10: 000000000000ffff R11: 0000000000000000 R12: 00000000ffffffea
R13: 0000000000000000 R14: ff11000109ee86d4 R15: ff11000109ee8648
FS:  0000000000000000(0000) GS:ff1100011a000000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020177000 CR3: 0000000108a3d006 CR4: 0000000000771ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
 <IRQ>
 kfree_skb_reason include/linux/skbuff.h:1263 [inline]
 ip_rcv_finish_core.constprop.0+0x896/0x2320 net/ipv4/ip_input.c:424
 ip_list_rcv_finish.constprop.0+0x1b2/0x710 net/ipv4/ip_input.c:610
 ip_sublist_rcv net/ipv4/ip_input.c:636 [inline]
 ip_list_rcv+0x34a/0x460 net/ipv4/ip_input.c:670
 __netif_receive_skb_list_ptype net/core/dev.c:5715 [inline]
 __netif_receive_skb_list_core+0x536/0x900 net/core/dev.c:5762
 __netif_receive_skb_list net/core/dev.c:5814 [inline]
 netif_receive_skb_list_internal+0x77c/0xdc0 net/core/dev.c:5905
 gro_normal_list include/net/gro.h:515 [inline]
 gro_normal_list include/net/gro.h:511 [inline]
 napi_complete_done+0x219/0x8c0 net/core/dev.c:6256
 wg_packet_rx_poll+0xbff/0x1e40 drivers/net/wireguard/receive.c:488
 __napi_poll.constprop.0+0xb3/0x530 net/core/dev.c:6877
 napi_poll net/core/dev.c:6946 [inline]
 net_rx_action+0x9eb/0xe30 net/core/dev.c:7068
 handle_softirqs+0x1ac/0x740 kernel/softirq.c:554
 do_softirq kernel/softirq.c:455 [inline]
 do_softirq+0x48/0x80 kernel/softirq.c:442
 </IRQ>
 <TASK>
 __local_bh_enable_ip+0xed/0x110 kernel/softirq.c:382
 spin_unlock_bh include/linux/spinlock.h:396 [inline]
 ptr_ring_consume_bh include/linux/ptr_ring.h:367 [inline]
 wg_packet_decrypt_worker+0x3ba/0x580 drivers/net/wireguard/receive.c:499
 process_one_work+0x940/0x1a70 kernel/workqueue.c:3229
 process_scheduled_works kernel/workqueue.c:3310 [inline]
 worker_thread+0x639/0xe30 kernel/workqueue.c:3391
 kthread+0x283/0x350 kernel/kthread.c:389
 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:244
 </TASK>

Fixes: 82d9983 ("net: ip: make ip_route_input_noref() return drop reasons")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://patch.msgid.link/20241206020715.80207-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Dec 21, 2024
…uctions

Add the following ./test_progs tests:

  * atomics/load_acquire
  * atomics/store_release
  * arena_atomics/load_acquire
  * arena_atomics/store_release

They depend on the pre-defined __BPF_FEATURE_LOAD_ACQ_STORE_REL feature
macro, which implies -mcpu>=v4.

  $ ALLOWLIST=atomics/load_acquire,atomics/store_release,
  $ ALLOWLIST+=arena_atomics/load_acquire,arena_atomics/store_release

  $ ./test_progs-cpuv4 -a $ALLOWLIST

  #3/9     arena_atomics/load_acquire:OK
  #3/10    arena_atomics/store_release:OK
...
  #10/8    atomics/load_acquire:OK
  #10/9    atomics/store_release:OK

  $ ./test_progs -v -a $ALLOWLIST

  test_load_acquire:SKIP:Clang does not support BPF load-acquire or addr_space_cast
  #3/9     arena_atomics/load_acquire:SKIP
  test_store_release:SKIP:Clang does not support BPF store-release or addr_space_cast
  #3/10    arena_atomics/store_release:SKIP
...
  test_load_acquire:SKIP:Clang does not support BPF load-acquire
  #10/8    atomics/load_acquire:SKIP
  test_store_release:SKIP:Clang does not support BPF store-release
  #10/9    atomics/store_release:SKIP

Additionally, add several ./test_verifier tests:

  #65/u atomic BPF_LOAD_ACQ access through non-pointer  OK
  #65/p atomic BPF_LOAD_ACQ access through non-pointer  OK
  #66/u atomic BPF_STORE_REL access through non-pointer  OK
  #66/p atomic BPF_STORE_REL access through non-pointer  OK

  #67/u BPF_ATOMIC load-acquire, 8-bit OK
  #67/p BPF_ATOMIC load-acquire, 8-bit OK
  #68/u BPF_ATOMIC load-acquire, 16-bit OK
  #68/p BPF_ATOMIC load-acquire, 16-bit OK
  #69/u BPF_ATOMIC load-acquire, 32-bit OK
  #69/p BPF_ATOMIC load-acquire, 32-bit OK
  #70/u BPF_ATOMIC load-acquire, 64-bit OK
  #70/p BPF_ATOMIC load-acquire, 64-bit OK
  #71/u Cannot load-acquire from uninitialized src_reg OK
  #71/p Cannot load-acquire from uninitialized src_reg OK

  #76/u BPF_ATOMIC store-release, 8-bit OK
  #76/p BPF_ATOMIC store-release, 8-bit OK
  #77/u BPF_ATOMIC store-release, 16-bit OK
  #77/p BPF_ATOMIC store-release, 16-bit OK
  #78/u BPF_ATOMIC store-release, 32-bit OK
  #78/p BPF_ATOMIC store-release, 32-bit OK
  #79/u BPF_ATOMIC store-release, 64-bit OK
  #79/p BPF_ATOMIC store-release, 64-bit OK
  #80/u Cannot store-release from uninitialized src_reg OK
  #80/p Cannot store-release from uninitialized src_reg OK

Reviewed-by: Josh Don <joshdon@google.com>
Signed-off-by: Peilin Ye <yepeilin@google.com>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jan 9, 2025
Hou Tao says:

====================
The use of migrate_{disable|enable} pair in BPF is mainly due to the
introduction of bpf memory allocator and the use of per-CPU data struct
in its internal implementation. The caller needs to disable migration
before invoking the alloc or free APIs of bpf memory allocator, and
enable migration after the invocation.

The main users of bpf memory allocator are various kind of bpf maps in
which the map values or the special fields in the map values are
allocated by using bpf memory allocator.

At present, the running context for bpf program has already disabled
migration explictly or implictly, therefore, when these maps are
manipulated in bpf program, it is OK to not invoke migrate_disable()
and migrate_enable() pair. Howevers, it is not always the case when
these maps are manipulated through bpf syscall, therefore many
migrate_{disable|enable} pairs are added when the map can either be
manipulated by BPF program or BPF syscall.

The initial idea of reducing the use of migrate_{disable|enable} comes
from Alexei [1]. I turned it into a patch set that archives the goals
through the following three methods:

1. remove unnecessary migrate_{disable|enable} pair
when the BPF syscall path also disables migration, it is OK to remove
the pair. Patch #1~#3 fall into this category, while patch #4~#5 are
partially included.

2. move the migrate_{disable|enable} pair from inner callee to outer
   caller
Instead of invoking migrate_disable() in the inner callee, invoking
migrate_disable() in the outer caller to simplify reasoning about when
migrate_disable() is needed. Patch #4~#5 and patch #6~#19 belongs to
this category.

3. add cant_migrate() check in the inner callee
Add cant_migrate() check in the inner callee to ensure the guarantee
that migration is disabled is not broken. Patch #1~#5, #13, #16~#19 also
belong to this category.

Please check the individual patches for more details. Comments are
always welcome.

Change Log:
v2:
  * sqaush the ->map_free related patches (#10~#12, #15) into one patch
  * remove unnecessary cant_migrate() checks.

v1: https://lore.kernel.org/bpf/20250106081900.1665573-1-houtao@huaweicloud.com
====================

Link: https://patch.msgid.link/20250108010728.207536-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants