Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Triton] Add tl.gather with a naive codegen implementation #5262

Merged
merged 20 commits into from
Nov 28, 2024

Conversation

Mogball
Copy link
Collaborator

@Mogball Mogball commented Nov 26, 2024

This PR adds a tl.gather builtin that implements a local gather along a single axis, with semantics matching torch.gather. tl.gather generates a tt.gather op, which is piped through the compiler mostly untouched at the moment, since the codegen is very naive.

The tt.gather is implemented by writing the source tensor into shared memory and then performing a gather out of shared memory, thus it requires scratch space to be allocated. In a follow-up, I will implement an optimized layout rule for the op that ensures the gather axis fits into a single warp, allowing the gather to be implemented using warp shuffles.

There are other avenues for optimization as well: tt.gather(tt.load) where the load only has one use can be lowered into a DMA from global memory to shared, and then gather directly from shared.

@Mogball Mogball requested a review from ThomasRaoux November 26, 2024 21:39
@Mogball Mogball changed the title Add tl.gather with a naive codegen implementation [Triton] Add tl.gather with a naive codegen implementation Nov 26, 2024
// CHECK-LABEL: @gather_op
tt.func @gather_op(%arg0: tensor<128x16xf32>, %arg1: tensor<512x4xi32>) -> tensor<512x4xf32> {
// CHECK-NEXT: %0 = tt.gather %arg0[%arg1] {axis = 0 : i32} : (tensor<128x16xf32>, tensor<512x4xi32>) -> tensor<512x4xf32>
%0 = tt.gather %arg0[%arg1] {axis = 0 : i32} : (tensor<128x16xf32>, tensor<512x4xi32>) -> tensor<512x4xf32>
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

just starting to look at this but shouldn't the index tensor be a 1D tensor if we index only along 1 dimension?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Gather along a single axis d means that each column along dim d in the output is comprised of the elements from the corresponding column in the source tensor. E.g. out[i,j] = src[idx[i,j],j] for axis=0.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ah I see, ok yeah looks like that's what pytorch. I'll let @apgoucher confirm that it is what he wants but makes sense to me.

Copy link
Collaborator

@ThomasRaoux ThomasRaoux left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks great! It's probably worth having @apgoucher check that the semantic is what he had in mind but other than that looks good to go

Comment on lines 1698 to 1699
assert index.type.shape[d] <= src.type.shape[
d], f"index dim {axis} cannot be greater than the corresponding source dim"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is a bit strange. You're allowing the gather op to implicitly slice the src tensor to match the index tensor? If we're going to allow this I think it should be its own operation.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I thought that's what we wanted?

I guess broadcasting could be supported

Copy link
Contributor

@peterbell10 peterbell10 Nov 27, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I thought that's what we wanted?

I 100% expect that the gather axis can be a different shape, but's it's not normal for the other dimensions to be allowed to be a different shape. I find it very surprising coming from numpy/pytorch semantics.

Also I don't think this behavior is compatible with broadcasting as it would be ambiguous. If the index has a dimension of size 1 we can't tell if it's supposed to be a slice, or if it should be broadcasted.

Copy link
Contributor

@peterbell10 peterbell10 Nov 27, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I suppose there is an advantage to fusing the gather op with the slice as in general I think a slice op could have to go through shared memory to transfer redundant data. Perhaps this could be a pattern matched lowering instead of implicit behavior of tt.gather though?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Huh I guess torch.gather actually does have this behavior. Now I'm not sure what to think haha. It feels wrong that there are huge chunks of the input tensor that get completely ignored, and feels to me like two operations.

I'm also a bit confused what the use case for this would be, as there's no way to create a slice that doesn't start at 0.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Am I understanding correctly that the output, source, and index tensor should all have the same shape?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm voting to keep it simple and have all the dims other than the specified dim to be equal to the tensor dims. We can always relax this in the future if there's a use case (I don't know of one ATM).

Copy link
Contributor

@lezcano lezcano Nov 27, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Am I understanding correctly that the output, source, and index tensor should all have the same shape?

Not quite. They should their shape should match in all the dimensions but the one that we are gathering. gather is just the "batched version" of doing the following 1D advanced indexing

source = torch.randn((N,))
idx = torch.randint(N, (K,))
output = source[idx]

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Okay thanks for chiming in! Let me alter the restriction.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I altered the builtin and op's invariants to require that the index and output dims other than the gather dim match the source dims, ptal

assert index.dtype.is_int(), "index must be an integer tensor"

rank = len(src.type.shape)
assert len(index.type.shape) == rank, "source and index tensors must have the same rank"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would be nice to support broadcasting.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you elaborate on what the broadcasting semantics would be?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actually, PyTorch does not mplements broadcasting for this operation.
If you think about it, it's a bit weird doing something like gather(3d_tensor, dim=1, 2d_tensor).
I say we don't implement broadcast semantics just yet. We can always implement them later.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@peterbell10 What are you thoughts here?

python/test/unit/language/test_core.py Outdated Show resolved Hide resolved
@peterbell10 peterbell10 self-requested a review November 27, 2024 01:23
Copy link
Contributor

@peterbell10 peterbell10 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry, misclicked on the approval.

Copy link
Contributor

@peterbell10 peterbell10 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. We can kick the broadcast vs slice can down the road. The core indexing functionality is what users really want.

Value offset = LLVM::linearize(rewriter, loc, indices, srcShapePerCTA);
// Emit the offset into the shared memory and then store the value.
Value ptr = gep(smemBase.getType(), elemType, smemBase, offset);
store(value, ptr);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can be left as a TODO, but we should do a masked store with getRedundantDataMask

Value getRedundantDataMask(ModuleOp moduleOp, Type valueTy,

(TBH I think there are quite a few places we need to cleanup redundant operations)

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think a masked store is better, in general there isn't performance penalty for storing multiple times to the same address in shared memory. Using a store without mask allows better code generation in general

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

in general there isn't performance penalty for storing multiple times to the same address in shared memory.

would I be right to say this is only true if there are no bank conflicts?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

no, as far as I know it is orthogonal to bank conflicts

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm confused. Are you saying that @p st.shared where p is false on all threads in the warp can still take multiple cycles?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ah no that's not what I meant. I meant when doing a st.shared with duplicated addresses there isn't a penalty for storing multiple time. The HW will pick one of them and store only once.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes I agree that on a single instruction level redundancy is okay. I guess that could be expressed by ignoring redundancy within a warp.

The problematic cases are:

  • within a thread i.e. calling st.shared more times than necessary.
  • between warps i.e. multiple warps calling st.shared to transfer the same data.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ah fair point.
I do wonder if it is always better to predicate as redundant data should not be the common case and there are some downsides to using predicates. The main downside is that it prevents the backend from using a larger element bitwidth.
Might be worth measuring at some point.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fair enough, I'll note that for thread level redundancy we shouldn't actually need a masked load though. We could just not emit the instructions.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

true. Also another problem I remember running into with predicates (although not this exact case) is that it tends to throw off ptxas a lot in term of scheduling and liveranges. This applies more to load than to store (the liveness problem doesn't exist with loads, the scheduling I'm not sure) but that's one thing to keep in mind.

@Mogball Mogball enabled auto-merge (squash) November 28, 2024 00:07
@Mogball Mogball merged commit 2c0b791 into triton-lang:main Nov 28, 2024
7 checks passed
@peterbell10 peterbell10 mentioned this pull request Dec 5, 2024
Jokeren added a commit that referenced this pull request Dec 6, 2024
Update

Update

Update

Update

Update

Use pytest' `tmp_path` in `test_irsource.py` (#5145)

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[TEST] Make mixed matmul test deterministic (#5151)

This prevents surprises when some value may go above the tolerance
threshold

Fix `gtest_discover_tests` timeout argument (#5149)

`gtest_discover_tests` runs the built unittest executable to create a
distinct CMake target for every individual unittest in each executable.
However, this was previously noted to time out on MacOS frequently
(because MacOS scans newly built executables for viruses, or
something...) but the timeout argument was incorrectly specified.

[Triton] Remove upstream bug workaround (NFC) (#5152)

Upstream handling of splatted bools in `DenseElementsAttr` was fixed, so
the workaround can be removed when lowering `arith.constant` to
TritonGPU.

Co-authored-by: peterbell10 <peterbell10@openai.com>

[Triton] Generate local MLIR reproducers when possible (#5155)

By setting a reproducer path, the pass manager will dump a standard MLIR
reproducer before each pass manager invocation. This PR also enables
additional local crash reproducer generation (to the same path set
through the env var), which tries to narrow down the specific pass that
failed, if the pass pipeline fails at any point.

Revert "[AMD][Pipeliner] Improve clustering and add prefetch (#4881)" (#5157)

This reverts commit cc25374
due to perf regressions.

[IR] Add typing for tensor descriptor types (#5147)

Currently tensor descriptors are just typed as `!tt.ptr<i8>` which is
exposing the assumption it's using a TMA descriptor. This changes it to
a custom type `!tt.tensordesc<tensor<...>>` which is lowered to a
pointer type in the LLVM IR.

I also add two new IR Ops which are used to cast between pointers and
tensordesc objects.
```mlir
tt.reinterpret_tensor_descriptor %ptr : !tt.ptr<i8> to !tt.tensordesc<...>
triton_nvidia_gpu.tensor_desc_to_tma_ptr %desc : !tt.tensordesc<...> -> !tt.ptr<i8>
```

Really both of these should be nvidia-specific but the first is exposed
in the triton IR to keep support for the by-value TMA descriptor API
around while we figure out if it's possible to update to the new style.

Load backend dialects in `IRSource` to make sure `parse_mlir_module` works for third_party backends (#5146)

The changes from #4924 do not
take into account the situation when `ttgir` level contains dialects
defined in third_party plugins (at least that's my understanding).

I'd also like to point out that the second use of `parse_mlir_module`
function (via `parse` function call) happens after the dialects are
loaded for the backend as well, which is why I thought my changes make
sense.

I hope this implementation will suit Triton, or maybe one can suggest
other options.

---------

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[BACKEND][NVIDIA] Add DotOp Hoisting Pass for WGMMA and Add Lowering for SMEM-to-MMAv3 DotOp Copy (#5003)

Hopper has two kinds of WGMMAs, "SS" (both operands in shmem) and "RS"
(LHS operand A in registers).
In cases where we apply elementwise operations on A before WGMMA, Triton
previously will copy A from global memory (GMEM) into registers (RF),
perform the elementwise ops, and then copy to shared memory (SMEM) to
perform SS WGMMA.

This PR adds an optimization for the case above to use RS GEMM. This
requires the following changes:

- In TritonGPU OptimizeDotOperands pass, add optimizations to change SS
GEMM into RS GEMM.
- Add TritonGPU -> LLVM lowering for copying from SMEM to RF in MMA v3
dotOperand layout.

NOTE: This may not see perf gain, and may even see perf loss, for
certain shapes (e.g. small-K), and additional optimizations are in a
separate [PR](openxla#19) (still more
optimizations are WIP). Please advise on the merging strategy.

Restore the CentOS 7 build (#5158)

We likely need it for the PyTorch 2.6 release

[BACKEND] Add folder for `addptr(ptr, 0) -> ptr` (#5166)

I noticed this rather obvious pattern was missing. It might come up for
example if you have an expression like:
```python
ptrs = ptr + y_stride * tl.arange(0, YBLOCK)[:, None]
```
and the `YBLOCK` is set to 1 during autotuning.

[TritonGPU] Fix incorrect mask operand used in for loop pipeliner (#5161)

When the OOB values for a `tt.load` are non-zero, the for loop pipeliner
needs to generate an `arith.select` to mask the loaded values with the
default OOB value. However, if the load memory requires a layout change,
the wrong mask operand was being passed to the `arith.select`, causing a
shape mismatch. The fix is to just use the same mask operand of the
origianl `tt.load` op.

Fixes #4739

[BACKEND] Cleanup redundant broadcast combine pattern (#5167)

Summary of changes:
- Remove `broadcast(cst) -> cst` from the triton-combine pass since it's
redundant with the existing folder.
- Reorder the triton-combine pass to come after the canonicalize pass,
to simplify pattern matching
- Cleanup patterns in triton-reorder-broadcast that called
`Op::canonicalize` in favor of `Op::getCanonicalizationPatterns`.

[AMD] NFC: Drop duplicated moveUpTranspose (#5168)

It was duplicated due to resolving merge conflicts.

[Triton] Default diagnostic handler only filters for errors (#5173)

A regular SourceMgrDiagnosticHandler is causing all remarks to be
emitted even if the user doesn't ask for it!

[AMD] Refactor instruction scheduling hints (#5144)

- Renamed instruction scheduling variants
- Enabled `buffer-ops` for `local-prefetch`
- Added  documentation regarding current variants

---------

Co-authored-by: Lei Zhang <antiagainst@gmail.com>

[AMD] Enable mixed precision matmul test (#5177)

This commit enables mixed precision matmul test
for AMD backend. For FP8 E4M3, we test
`fp8e4m3fnuz` given that's natively supported on
MI300 series.

Update to llvm/llvm-project@bd9145c8c213 (#5180)

This pulls in llvm/llvm-project@bd9145c8c213
to enable ASan on AMD backend.

[AMD] Implement RepOrder for AMD MMA layouts (#5126)

Implement RepOrder methods for MFMA and WMMA layouts. Both layouts have
row major rep layout. Also,
isTranspose flag in MFMA layout does not affect RepOrder, meaning
RepOrder is row major in both cases.

Co-authored-by: Ognjen Plavsic <ognjen.plavsic@luxoft.com>

[BACKEND] Fix ProgramPoint passing in AxisInfoAnalysis (#5181)

Fixes #5122.

The `ProgramPoint`
[here](https://github.com/triton-lang/triton/blob/0bd30a2f3192204c5a50d5ffde27ad8493f6c026/lib/Analysis/AxisInfo.cpp#L1087)
is created on the stack. Then its address is
[passed](https://github.com/triton-lang/triton/blob/0bd30a2f3192204c5a50d5ffde27ad8493f6c026/lib/Analysis/AxisInfo.cpp#L1088-L1089)
to the MLIR `SparseAnalysis` code, where it is [added as a
dependency](https://github.com/llvm/llvm-project/blob/33ff9e43b4c5bdc3da31c6b11ad51d35a69bec5f/mlir/lib/Analysis/DataFlow/SparseAnalysis.cpp#L311)
and later
[dereferenced](https://github.com/llvm/llvm-project/blob/33ff9e43b4c5bdc3da31c6b11ad51d35a69bec5f/mlir/lib/Analysis/DataFlow/SparseAnalysis.cpp#L90).
By the time the `ProramPoint` is dereferenced in the
`AbstractSparseForwardDataFlowAnalysis::visit`, the
`AxisInfoAnalysis::visitForOpInductionVar` will have finished and the
`ProgramPoint` stack variable destroyed. This leads to a segfault (which
can be reproed on the base rev with the lit test added in this PR).

The code modified in this PR was originally added in #4927, in
conjunction with updating the `llvm-project` hash to `b5cc222d7429`.
However, as noted in llvm/llvm-project#110344
(the `llvm-project` PR that has made the refactoring prompting the
`AxisInfo.cpp` change in #4927):

> For dense forward data-flow analysis and other analysis (except dense
backward data-flow analysis), the program point corresponding to the
original operation can be obtained by `getProgramPointAfter(op)`

As the `AxisInfoAnalysis` (in Triton) inherits from
`SparseForwardDataFlowAnalysis` (in MLIR), in this PR we follow the
above which resolves the segfault issue (as the `ProgramPoint` is now
stored in the instance-level state of the pass).

P.S. The lit test added in this PR is not exactly minimal. However, I
did my best to minimize it starting from the 400-line repro TTGIR in

[INTERPRETER] Fix argument passing for internal parameters in function declarations (#5169)

[NFC] Use reference instead of copies in few places (#5118)

Apply fixes suggested by coverity static analysis.

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[BACKEND] Add missing precondition in optimize acc init (#5184)

We need scalar select to be able to do this optimization.

[BACKEND] Fix accumulator init optimization for integer matmuls (#5192)

[AMD][Pipeliner] Reland "Improve clustering and add prefetch" (#5175)

This unreverts commit 38c6284
to reland #4881
with the following fixes:

* Still keep `scheduleGlobalLoadLocalStore` as original--it turns
to be not totally ready to replace yet. Further iteration on it needed.
* Turn on `TRITON_HIP_STREAM_PREFETCH` if the instruction
  scheduling variant is `local-prefetch`, given it's needed there.

---------

Co-authored-by: Lei Zhang <antiagainst@gmail.com>

[AMD] Define an extract slice operation (#4804)

This commit introduces an extract_slice operation for AMD backend
to enable extracting slice of a tensor in registers without data
exchange.
It enables breaking down large tiles of tensors into smaller ones
for better instruction interleaving and scheduling.

This can be useful for hiding global memory latency when a global
load/store can be efficiently split into several loads/stores to be
overlapped with compute fo attention.

[BACKEND] Fix getElemsPerThread for mmav3 dot operand (#5189)

In mmav3 case the number of elements per threads should be independent
of the element type, we should only consider kWidth.
TODO: it should also be true for MMAv2 but the logic is a bit more
complicated.

Also enable larger block_m in mixed mode tests to exercise MMAv3 case

[INTERPRETER][NFC] Rename `tensor_shape` -> `block_shape` in interpreter (#5195)

`tensor_shape` is a confusing name and doesn't match block pointer's
semantic.
`block_shape` is much clearer.

[LAYOUTS] Implement LL conversion for DotOperand(Hopper) (#5193)

We also rewrite the way we implement DotOperand(Ampere) and mma Ampere
to promote code reusing. I also started using what I believe is a rather
compact pattern to write these things, where you first call `identiyND`
with the `repOrder`, which gives you an LL with the dims in the correct
order, and then you construct the final layout by specifying the tiles
by multiplying `identity1D` maps. Using this allowed me to heavily
simplify the handling of the `warps` of `DotOperand` which used to be a
tad messy.

Update README.md to remove triton conference (#5198)

It happened two months ago

[PROTON] Add `proton.state` utility (#5110)

`state` is different from `scope` in several ways:

1. State is not recursive; each operation can have only a single state.
Inner most state will overwrite the outer most state.
2. A states is a suffix, meaning that the original call path will append
a state above the name of each kernel.
3. State is compatible with both Python and shadow contexts.

[CI] remove unused inductor workflows (#5073)

These tests have completely offloaded torch inductor tests to Meta a few
months ago. They are currently disabled on GitHub.

Signed-off-by: Sébastien Han <seb@redhat.com>

[INTERPRETER] Fix lower bound check for block pointers (#5201)

We forgot to check `offset >= 0` previously.

Now that it should match the semantic in the GPU backend

https://github.com/triton-lang/triton/blob/7bce3613755e26953518962d02315dfd343dc50c/lib/Dialect/Triton/Transforms/RewriteTensorPointer.cpp#L136

[IR] Remove memdesc from `tt.trans` and implements `ttg.memdesc_trans` (#5194)

[LLs] [BE] Simplify identityND (#5199)

The auxiliary function `identityND` used to take an `order` parameter,
that comes from triton, and a set of dimensions. Now, the order in
triton is defined wrt. `dim0..dim<rank-1>`, so the dimension arg was
redundant. This was quite confusing.

We see that in all the uses of `identiyND`, we would pass the canonical
dimensions, other than in one that we simply remove as it was not
necessary.

We remove the dims arg and simply return a layout with output dims
`dim0..dim<rank-1>`.

[MXFP] Fix packing for mxfp4 type (#5197)

When packing we should have element 0 in the lower bits, until this PR
it was in higher bits.

[LAYOUTS] Unify the implementation of getShapePerCTA (#5183)

We unify it and simplify its API (it was taking an unused `shape`
parameter). While doing this, we found that the previous implementation
was incorrect at least for `AMDWmmaEncodingAttr`, as this layout was
using the shape parameter.

Interestingly enough the doc in the header file for this function noted
that the function is indeed independent of the tensor shape, even though
the function does take a shape as an input!

https://github.com/triton-lang/triton/blob/0bd30a2f3192204c5a50d5ffde27ad8493f6c026/include/triton/Dialect/TritonGPU/IR/Dialect.h#L113-L114

[BACKEND] Use the LL API to replace the using of legacy layout attribute API. (#5196)

The util function `getDistributedLayoutStr` uses the `DistributedLayout`
attribute interface, which is not flexible for third-party extensions.
Use the `getInDimSize` of the `LinearLayout`, which is better since the
legacy layout has been converted to the `LinearLayout`.

There is no new test case since it is only a change in API usage.

[CI] Fix ccache cache restoration to improve build times (#5202)

This improves a warm-cache macOS build from ~25 mins to 2 mins.

[CI] Fix `du` failling if cache restore fails (#5206)

Follow up to #5202

It's currently failing with the error
```
du: /Users/runner/.triton/**: No such file or directory
Error: Process completed with exit code 1.
```
which happens because even though the `.triton` directory exists, it is
empty. This instead uses du on `.triton` with a depth of 1.

[BACKEND][LAYOUT] Use LL for AMDMfma related layout conversions (#5210)

[BUILD] Add option to limit number of parallel link jobs (#5212)

[CI] Fix cache not saving (#5213)

1. [CI] Fix cache not saving

    Re-using the output of the cache restore step was recommended by the
`actons/cache` docs, but it doesn't work here because we actually start
from a clean cache when we run save so there is no output available to
    read.

    The annoyances of testing in the PR but main being a different
    environment.
2. Bump macOS timeout

[LAYOUTS] Implement IR support for LinearLayouts (#5170)

We also exercise this in scale_dot, where we enable support for warps of
arbitrary shape (before we just allowed `[num_warps, 1]`).

With this infra in place, it should be rather easy to move from the
legacy layouts to using LLs to represent all of our layouts.

Something I'm concerned about is the amount of recomputation that
happens when calling methods like `getSizePerThread` and the like, where
we keep recomputing the result. There might be an optimisation
opportunity here where we cache the result of all these functions.

We choose the IR representation of an LL via its canonical form + a
`repOrder` for several reasons:
- It's generally more compact
- It's easier to CSE, so it's easier to see when two layouts are in fact
  the same.
- A technical reason: the `toLinearLayout` function returns a tensor
  with dimensions `dim0, ..., dim<rank-1>`, in other words, it "forgets"
  the repetition order. Without the repetition order, we cannot recover
  the tile size of the argument. In particular, we cannot recover
  `getSizePerThread`. There is an argument to be made about whether
  `getSizePerThread` is useful on its own, or whether it is
  `getElemsPerThread` the real useful abstraction here, but for now, we
  keep both for BC.

[CI] Run tests when CI is manually triggered (#5216)

Currently you can manually call a workflow dispatch, but it won't
actually run the tests because the variable enable_integration isn't
set.

[PROTON] Introduce the Proton dialect as a third-party plugin for intra-kernel perf tooling (#5119)

This PR introduces the `Proton Dialect` to enable intra kernel profiling
and tooling for Triton. As a third-party dialect, it serves as the
building blocks to create 3rd-party perf tools (e.g., profilers,
analysis, modeling) for Triton compiler developers in a compiler-centric
way, such as an intra-kernel latency profiler to understand software
pipelining, warp specialization, and CTA fine-grained orchestration
(e.g., cuda core, tensor core, TMA). Future developments would integrate
this dialect with the existing Proton backend profiling infrastructure
to make it a powerful and general perf tool utility. As a first step,
this PR adds some basic boilerplate code and mechanics, and the
`proton.record` op for the `Proton Dialect`.

---------

Co-authored-by: Yuanwei Fang <fywkevin@fb.com>
Co-authored-by: Keren Zhou <kerenzhou@openai.com>

[DRAFT] Completely remove `MemDesc` from the Triton dialect (#5208)

After this PR, `MemDesc` will be a type only in the TritonGPU dialect,
as will the `TensorOrMemDesc` interface.

[AMD] Prevent wrong reordering of scf operations (#5203)

The pass was reordering scf.if operations without checking the extra
dependencies coming from the region.
For now just prevent this case although this part of the code might
still be fragile.

[AMD] Cover default case in MfmaGroup (#5218)

If you build using the `CMakeLists.txt` and not `setup.py` and you build
in `Release` then you get

```
/__w/triton/triton/third_party/amd/lib/TritonAMDGPUTransforms/MfmaGroup.cpp: In function ‘std::pair<mlir::Type, mlir::Type> mlir::TypesFromMfmaId(MLIRContext*, MfmaTypeId)’:
Warning: /__w/triton/triton/third_party/amd/lib/TritonAMDGPUTransforms/MfmaGroup.cpp:240:1: warning: control reaches end of non-void function [-Wreturn-type]
```

Allow Layouts to propogate to local_load (#5219)

While working on some higher dimension tensor kernels, I noticed poor
performance due to the fact that layouts wouldn't propagate to local
loads. Since we do allow layout folding with local store and local
alloc, this seems like a bit of an oversight.

The change gives a 40% speed improvement on certain kernels for NVidia
GPUs.

This also removes asserts in lowering for higher dimensional kernels. As
far as I can tell, those restrictions aren't required in practice.

- [x] I am not making a trivial change, such as fixing a typo in a
comment.
- [x] I have written a PR description following these
[rules](https://cbea.ms/git-commit/#why-not-how).
- [x] I have run `pre-commit run --from-ref origin/main --to-ref HEAD`.
- [x] I have added tests.
- [x] The `lit` tests I have added follow these [best
practices](https://mlir.llvm.org/getting_started/TestingGuide/#filecheck-best-practices)

[BACKEND] Fix transpose optimization missed during refactor (#5226)

[AMD] Use warp shuffle for fp8 MFMA to dot operand layout conversion (#5139)

Adding a shortcut case for fp8 MFMA to dot operand layout conversion
that avoids using shared memory, to speed up FP8 attention kernels.

[LAYOUTS] [BE] Simplify Ampere/Hopper paths introduced in #5189 (#5200)

We simplify the implementation of `getElemsPerThread` and strengthen the
preconditions of `getRepForOperand`.

More generally, we should try to minimise the calls to `isAmpere` and
`isHopper` throughout the codebase. I'll do a pass fixing many of these
once we land LLs for `ldmatrix` and Hopper.

[BACKEND] Use LL to simplify redundant elements check and fix related issues (#5225)

Make TMA tests compatible with older CUDA toolchains (#5221)

TMA fences require CUDA toolchain 12.3 or greater, but current gating
does not check the CUDA toolchain version. This causes
`test_experimental_tma.py` to fail when run with older CUDA toolchains.

With cuda-12.0:
```
55 failed, 9 passed in 18.11s
```

With cuda-12.4:
```
64 passed in 11.99s
```

With cuda-12.0:
```
9 passed, 55 skipped in 4.26s
```

With cuda-12.4:
```
64 passed in 11.96s
```

[CMake] Add C as project language (#5217)

If you build with `-DTRITON_BUILD_UT=OFF` on Mac you will get something
like

```
-- Looking for histedit.h
CMake Error at /opt/homebrew/Cellar/cmake/3.30.5/share/cmake/Modules/CheckIncludeFile.cmake:90 (try_compile):
  Unknown extension ".c" for file
-- Looking for histedit.h - not found

    /Users/runner/work/triton/triton/triton-build/CMakeFiles/CMakeScratch/TryCompile-QA06d6/CheckIncludeFile.c

  try_compile() works only for enabled languages.  Currently these are:

    CXX

  See project() command to enable other languages.
Call Stack (most recent call first):
  llvm-bd9145c8-macos-arm64/lib/cmake/llvm/FindLibEdit.cmake:28 (check_include_file)
  llvm-bd9145c8-macos-arm64/lib/cmake/llvm/LLVMConfig.cmake:177 (find_package)
  llvm-bd9145c8-macos-arm64/lib/cmake/mlir/MLIRConfig.cmake:10 (find_package)
```

because `C` isn't an enabled project language.

[AMD] Fix slow compilation due to inlining print calls (#5153)

This PR disables inline of print related functions, which speeds up
compilation of test_scan_layouts dramatically.

---------

Co-authored-by: Lei Zhang <antiagainst@gmail.com>

[AMD] Re-enable overflow test in test_reduce_layouts (#5233)

#5153 fixed
the issue; but we missed enabling one of the disabled
case.

[BACKEND] Fix a missed transpose optimization during refactor (#5236)

Revert "Allow Layouts to propogate to local_load" (#5237)

This is causing some performance regression. I'll investigate and reland
it.
Reverts #5219

Revert "[AMD] Use warp shuffle for MFMA to Dot operand layout conversion (FP8)" (#5240)

It is causing performance regression, revert until it can be
investigated
Reverts #5139

Updated README.md to show the steps for overriding kernel's IR (#5239)

Ensure device context before launching kernel (#3731)

If a kernel is launched on a thread which has not initialized a CUDA
context (as can happen in the linked issue), it will throw an error. A
simple fix is to call `cudaFree(0)` to establish a device context.

Fixes #3729

[LLVM] Update to llvm-project@86b69c3 (#5242)

This includes llvm/llvm-project#115627

[BUILD] Add a stable symlink to llvm in the triton cache (#5234)

Currently the llvm path changes every time the pin updates which makes
it annoying to use the included tools. e.g. I use the tablegen language
server, but currently need to update my editor config every time the
llvm pin changes.

This adds a stable symlink which for me is
`~/.triton/llvm/llvm-macos-x64`. This will always point to the most
recent version of llvm used to build triton.

As a bonus this also refactors the symlink update code which was
copy-pasted a few times.

[PIPELINER] tweak pipeline heuristic (#5247)

Don't pipeline the dot accumulator in the default heuristic.
In the finer grain control will allow user to decide.

Allow Layouts to propogate to local_load (#5219) (#5249)

recommit of #5219

While working on some higher dimension tensor kernels, I noticed poor
performance due to the fact that layouts wouldn't propagate to local
loads. Since we do allow layout folding with local store and local
alloc, this seems like a bit of an oversight.

The change gives a 40% speed improvement on certain kernels for NVidia
GPUs.

This also removes asserts in lowering for higher dimensional kernels. As
far as I can tell, those restrictions aren't required in practice.

- [x] I am not making a trivial change, such as fixing a typo in a
comment.
- [x] I have written a PR description following these
[rules](https://cbea.ms/git-commit/#why-not-how).
- [x] I have run `pre-commit run --from-ref origin/main --to-ref HEAD`.
- [x] I have added tests.
- [x] The `lit` tests I have added follow these [best
practices](https://mlir.llvm.org/getting_started/TestingGuide/#filecheck-best-practices)

<!---
The core Triton is a small number of people, and we receive many PRs
(thank
you!).  To help us review your code more quickly, **if you are a new
contributor (less than 3 PRs merged) we ask that you complete the
following
tasks and include the filled-out checklist in your PR description.**

Complete the following tasks before sending your PR, and replace `[ ]`
with
`[x]` to indicate you have done them.
-->

- [ ] I am not making a trivial change, such as fixing a typo in a
comment.

- [ ] I have written a PR description following these
  [rules](https://cbea.ms/git-commit/#why-not-how).

- [ ] I have run `pre-commit run --from-ref origin/main --to-ref HEAD`.

- Select one of the following.
  - [ ] I have added tests.
    - `/test` for `lit` tests
    - `/unittest` for C++ tests
    - `/python/test` for end-to-end tests
  - [ ] This PR does not need a test because `FILL THIS IN`.

- Select one of the following.
  - [ ] I have not added any `lit` tests.
- [ ] The `lit` tests I have added follow these [best
practices](https://mlir.llvm.org/getting_started/TestingGuide/#filecheck-best-practices),
including the "tests should be minimal" section. (Usually running Python
code
    and using the instructions it generates is not minimal.)

Co-authored-by: Matthew Brookhart <matthewbrookhart@gmail.com>

Windows related changes in `CMakeLists.txt` (#5186)

Upstreaming some of our Windows related changes assuming that there is
interest in this
#5094 (comment)
and hoping that it will not make it much more difficult to support this
CMake file.

---------

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[AMD] NFC: Unified header guard in third_party/amd (#5244)

This commit unified the names of header guards in third_party/amd.

[AMD] NFC: Drop v2 Suffix from Stream Pipeline (#5251)

Since StreamPipelineV2 has been the default for a while, this
commit promoted StreamPipelineV2 to the general
StreamPipeline by removing 'v2' suffix.

[NFC] Cleanup references to unused index dialect (#5257)

Also cleans up some includes clang thinks are unused.

[BUILD] Ensure parent directory exists before creating symlinks (#5258)

Fixes #5256

Tmp

[BACKEND] Fold transpose(splat_const) (#5259)

Add folding for a transpose of a splat constant.

---------

Co-authored-by: peterbell10 <peterbell10@live.co.uk>

[LAYOUTS] Use LLs for Hopper whenever we wouldn't use ldmatrix (#5235)

The legacy path has some bugs for cases like `kWidth=1`. I'm starting to
port Hopper to use LLs to try to isolate them.

[AMD] NFC: Cleanup namespace hierachy (#5246)

Refactored namespace hierarchy by squeezing separate
namespace hierarchy together.

[AMD] Fix unhandled profile event in RoctracerProfiler (#5252)

Fixes proton unit tests when upgrading to ROCm 6.2 by
adding missing event handlers.

Magic number is replaced with the corresponding enum
value which was added by upgrading the HIP headers
#5077.

Fix Blocked FMA path in isLayoutOK (#5260)

Fixes
https://github.com/triton-lang/triton/pull/5235/files/de18e21ddf5bf03f17f779fef032d53ea87a53a0#r1858955613

[Tutorial] Remove incorrect caching from softmax tutorial (#5162)

The fused softmax implementation in the tutorial precompiles the kernel
to query the register usage of the kernel, based on the parameters used
to specialize the kernel. On top of this, it implements a simple caching
system for this step based on just the block size.

As noted in #4739, this
caching is incorrect, because it's also not keyed on the `num_stages`
constexpr argument or the shapes of the tensors. Since triton already
has its own JIT compilation cache, and this caching bit is not really
relevant to the tutorial, just remove it to get rid of the footgun.

[INSTRUMENTATION] Generalize code in `test_gpuhello.py` (#5263)

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

Create an aggregate `check-triton-unit` target (#5150)

This adds a CMake target `check-triton-unit` that builds an runs all
Triton unittests written in gtest. This makes it more conveninent to
rebuild and run all unittests at once with finer granularity (instead of
`ninja; ctest`).

[NFC] Add `test_bessel` into `test_libdevice.py` (#5261)

Just a port of one of our tests. I didn't find any similar ones in
Triton itself, this should increase the test coverage.

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[NFC] Add functional regression test for cummax with bool type (#5264)

This kernel was obtained using PyTorch inductor some time ago.

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[AMD] NFC: Unified comment style (#5248)

Script:

egrep -nrI --exclude-dir "backend" "^\s*/\*+" third_party/amd

[AMD] Upgrade AMD CI docker image (#5230)

This commits updates the CI to use a new docker image that
contains ROCm 6.2.2 with ASan support and PyTorch 2.5.1.

This also switches to ubuntu's default clang toolchain instead
of using the one which comes with ROCm.

Implement `dot_scaled(mmav3)` (#5269)

As per title

[BUILD] Some CMake cleanup/modernisation (#5271)

- Prefer `find_package` over ad-hoc variable passing
- Prefer `target_` api vs global `_directories` apis
- Use `target_link_options` to specify link options instead of
`target_link_libraries`

Closes #5270

[DIALECT] Rename `triton_gpu` to `ttg` and `triton_nvidia_gpu` to `ttng` (#5266)

It may cause changes for downstream tasks but we think it's beneficial
to shorten dialect name and make them consistent. That is, we are using
`tt` to represent the `triton` dialect.

[BACKEND] Fix inline asm bug for multiple packed <32bit output (#5273)

Resolves #5272

- Fixes logic for walking result struct from LLVM InlineAsm in case of
multiple sub-32bit results
- Adds lit test

[NVIDIA][Backend] Add CoalesceAsyncCopy Pass for in-DotOpEnc Upcasting (#5222)

This is a follow-up to the dotOp hoisting optimization for WGMMA
(MMAv3). See
#5003 (comment)

In short, when upcasting operand A in registers prior to WGMMA and when
pipelining is enabled, `AsyncCopyGLobalToLocal`'s src gmem blocked
encoding will have `sizePerThread` > smem view's `vec` (along the
contiguous dimension). This will resulting in multiple `cp.async`
instructions being generated for a contiguous global data segment,
resulting in uncoalesced loads. This was previously confirmed in ncu.
See above comment for an example.

I've added a generalized fix in a new pass after the pipeliner. I've
reused the logic in the LLVM lowering for `AsyncCopyGlobalToLocal` to
calculate the max contiguous copy size. I compare that to the blockEnc's
`sizePerThread` along the inner (contiguous) dimension. If the former is
less than latter, I set the latter to former.

When A is k-major, can verify a small perf improvement and that ncu no
longer reports uncoalesced loads.
When A is m-major, this pass is a no-op because `copy size ==
sizePerThread == 16`

ptal, thanks @ThomasRaoux

[Triton] Add `tl.gather` with a naive codegen implementation (#5262)

This PR adds a `tl.gather` builtin that implements a local gather along
a single axis, with semantics matching `torch.gather`. `tl.gather`
generates a `tt.gather` op, which is piped through the compiler mostly
untouched at the moment, since the codegen is very naive.

The `tt.gather` is implemented by writing the source tensor into shared
memory and then performing a gather out of shared memory, thus it
requires scratch space to be allocated. In a follow-up, I will implement
an optimized layout rule for the op that ensures the gather axis fits
into a single warp, allowing the gather to be implemented using warp
shuffles.

There are other avenues for optimization as well: `tt.gather(tt.load)`
where the load only has one use can be lowered into a DMA from global
memory to shared, and then gather directly from shared.

[NVIDIA][Launcher] Ensure device context is valid before calling getPointer (#5276)

[CMAKE] Add `triton-tensor-layout` dep to lit tests (#5275)

Noticed this when `triton_gpu` was renamed to `ttg`.

[BACKEND] Fix and document logic for creating warp shapes in MMAv3 (#5277)

[NFC] Remove dead code for python<3.8 (#5280)

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[NFC] Remove `CMAKE_VERBOSE_MAKEFILE` var (#5282)

Warning:
```bash
  CMake Warning:
    Manually-specified variables were not used by the project:

      CMAKE_VERBOSE_MAKEFILE
```

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[AMD] Use Linear Layout convertions for AMDWmma (#5255)

Enable LL conwertions for WMMA as well as for MFMA layouts.

See also: #5210

Signed-off-by: Ilya Veselov <iveselov.nn@gmail.com>

Add tests for 3D local_load local_alloc and relax asserts (#5285)

Also switch 3D dot_operand cases to use linear layout path, This may be
suboptimal in some cases but that solves the functionality problems
which is more important. There is ongoing work from Mario that should
get the code quality to be good again soon.

[Build] Don't require Development.Embed python component (#5287)

This component is missing from the wheel building image, so we need to
make the requirement more specific.

https://github.com/triton-lang/triton/actions/runs/12081047335/job/33689420657#step:6:332

[NFC] Remove unused forOp argument from `setStageCluster` (#5288)

<git-pr-chain>

[NFC] Remove unused forOp argument from `setStageCluster`

1. 👉 #5288 👈 **YOU ARE HERE**
1. #5289
1. #5290

</git-pr-chain>

[PROTON] Don't use designated initializers in `CuptiPCSampling.cpp` as it relates to c++20 (#5291)

Hi @Jokeren,

these changes relates to your PR:
#4674, so I would like to ask
if this was done on purpose? (considering that the project declares
support for the c++17 standard).

I discovered this while trying to compile proton using MSVC. It looked
like this:
`\CuptiPCSampling.cpp(18): error C7555: use of designated initializers
requires at least '/std:c++20'`.

This might also be a good opportunity to ask you about your plans to
transition Triton to `с++20`.

---------

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

Add back missing check

Replace triton_gpu with ttg

Update

Update

Update

Define `pytest-forked` and `pytest-xdist` as `tests` target deps (#5292)

This way, the dependencies needed for testing are localized in one place
- `setup.py` (instead of several), which makes maintenance easier.

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[BUILD] Skip installing test related python packages (#5294)

#5292 failed because of macOS
build. Since we don’t run any tests on macOS anyway, it’s fine to simply
skip them.

Update

Update

[TESTING] Add golden sample test for pipelining matmul with descriptors (#5289)

<git-pr-chain>

[TESTING] Add golden sample test for pipelining matmul with descriptors

1. #5288
1. 👉 #5289 👈 **YOU ARE HERE**
1. #5290

⚠️⚠️ Please **do not click the green "merge" button** unless you know
what
you're doing.  This PR is part of a chain of PRs, and clicking the merge
button will not merge it into master. ⚠️⚠️
</git-pr-chain>

Specify in `setup.py` that `setuptools>=40.8.0` is a required dependency (#5293)

Closes #5090

vancoykendall is right that the dependency is used not only during build.
However, for now I added it to `setup.py`, since the migration of
dependencies to `pyproject.toml` has not yet occurred.

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[TOOLS] Improve `generate-test-checks.py` (#5300)

- Format the doc string using the `reStructuredText` format.
- Lift the example instructions from the `.mlir.in` file to the
docstring. Previously we matched the `module` keyword twice and
encountered errors such as `assert len(output_segments) ==
len(source_segments),`. It's also fine to update the regex to something
like `\bmodule` to solve the problem, but I think lifting it from the
input file is just simpler.

[NFC][DIALECT] Remove dependency on `mlir::tensor::TensorDialect` (#5303)

[IR] Improve `ttg.memdesc` (#5296)

- Add an `allocShape` field to denote the shape a memory descriptor when
it's allocated. The value will be propagated to all its descendants
created through `subview` ops.
- Make `encoding` and `memorySpace` fields required instead of optional.
- Implement the `getAlias` function for `#ttg.shared_memory` to shorten
its length in `.mlir` files

Update

Update

[Pipeliner] Handle masking for atomic_rmw (#5231)

This commit is to support atomic_rmw in the function
predicateOp to mask operations during scheduling.

[TESTS] Forward fix for CI break (#5323)

PR #5231 was authored before the `triton_gpu` -> `ttg` rename and CI is
currently broken.

Search for `ptxas` only for cuda backend in `supports_tma` function (#5314)

For other backends, `ptxas` may not be installed.

Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>

[LLVM] Update to llvm/llvm-project@1f20eee6dc36 (#5308)

This pulls in the AMDGPU backend support for the
gfx950 target.

We need to fix the rewrites in `Combine.td` given that
llvm/llvm-project#112700 adds
a new attribute for denorm mode for `arith.addf`.

---------

Co-authored-by: Lei Zhang <antiagainst@gmail.com>

[AMD][BACKEND] Add gfx950 target definitions. (#5281)

Enable new arch target since backend support has been added.

[AMD] Adjust local_store and global_load ordering (#5254)

This commit adjusts local store and global load
ordering to let local store be ahead of global
load when they are not in the same stage. It
should help GEMM kernel performance.

Re-align main and llvm-head (#5334)

We have a couple of PRs that landed in the `llvm-head` branch that are
not in `main`.

Merging those into `main` to prevent further divergence between
branches.

---------

Co-authored-by: Won-Kyu Park <wkpark@gmail.com>
Co-authored-by: Lei Zhang <antiagainst@gmail.com>

[PIPELINER] Cleanup of LoopScheduling.cpp, introduction of AssignLatencies (#5176)

This change breaks down LoopScheduling into two sub-passes: latency
assignment and actual scheduling.
Latency assignment is a transformation that analyzes the loop and based
on the requested number of stages it assigns "latencies" to the ops that
are going to be converted to async ops by the pipeliner. Latencies are
expressed in terms of number of iterations of the loop and can be
thought as per-operation num_stages.
Scheduling transformation takes these latencies and builds a pipeliner
schedule based on it. The process of building a schedule was slightly
rewritten to simplify the code and cleanup the logic that was no longer
needed after recent refactoring.
Breaking down the schedule into latency assignment and proper scheduling
has number of purposes:
1. Code became more modular, with cleaner interfaces that helps with
maintanance
2. Both parts can be tested in separation, I have added lit tests for
both pieces. We can finally test our pipeliner infrastructure in
manageable chunks
3. It opens up opportunity to expose per-op "latencies" to the frontend,
enabling creating user-defined schedules right from the language level

Next step in the cleanup process is to clearly separate lowering and
pipelining phases.

Update

Update

Update

Update

Update

Update

Update

Update
@Mogball Mogball deleted the mogball/gather branch December 12, 2024 02:39
@yiakwy-xpu-ml-framework-team
Copy link

yiakwy-xpu-ml-framework-team commented Jan 16, 2025

Hi @Mogball @peterbell10 @ThomasRaoux I am trying to provide radixSort based algorithm (moe sort ids) in triton without direct accessing DRAM . So I tried tl.gather together with vectorization method:

sgl-project/sglang#2913

Issue

There are good and bad points. In my investiation, I found that the tl.gather only accepts tl.tensor as input. So here is a vivid example:

# this is desired MOE sorted_ids ('15' is the placeholder)
sorted_ids_cuda tensor([ 2,  5, 10, 13, 15, 15,  3,  6,  9, 11, 14, 15,  1,  4,  7,  0,  8, 12,
        15, 15, 15, 15, 15, 15, 15], device='cuda:0', dtype=torch.int32)

# it is from
tensor([[ 2.,  5., -inf, 10., 13., -inf, -inf, -inf],
        [-inf,  3.,  6.,  9., -inf, -inf, -inf, -inf],
        [-inf, -inf, -inf, 11., 14., -inf, -inf, -inf],
        [ 1.,  4.,  7., -inf, -inf, -inf, -inf, -inf],
        [ 0., -inf,  8., -inf, 12., -inf, -inf, -inf],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]], device='cuda:0')

tl.gather does not accept boolen type index to filter out -inf values (which is equivalent to a[a >=0]).

Desired solution

Do we accept PRs which enables index or mask as input for tl.gather :

# this generates 2 dimension on-chip tensor
a = tl.gather (a, a >=0, axis=1, defaults=0)

tensor([[ 2.,  5., 10., 13., 0, 0, 0, 0],
        [ 3.,  6.,  9.,  0, 0, 0, 0, 0],
        ...
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]], device='cuda:0')
             
a = tl.gather (a, a >=0, keep_dims=False)

tensor([2.,  5., 10., 13., 3.,  6.,  9.,  ..., 0], device='cuda:0')

Either way works for me.

@apgoucher
Copy link
Collaborator

tl.gather does not accept boolen type index to filter out -inf values (which is equivalent to a[a >=0]).

@yiakwy-xpu-ml-framework-team The operation that you're describing (with a boolean mask) isn't a gather, but rather an entirely different operation called stream compaction. There is an article which describes how to accomplish stream compaction in terms of scan (tl.cumsum) and gather operations, both of which are existing primitives in Triton:

https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer/chapter-36-stream-reduction

Hope that this helps for your usecase.

@yiakwy-xpu-ml-framework-team
Copy link

yiakwy-xpu-ml-framework-team commented Jan 16, 2025

@apgoucher Thanks for this advice. I will look into it. The triton implementation suffers from performance issue compared to native DRAM direct access one.

The native cuda implementation outperforms both tirton implementation because threads id to value id manipulation is much easier on SRAM (though it has own issue will be fixed later) and blockwise synchronization facilitates fusion of occurrencies based implementation.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

7 participants