-
Notifications
You must be signed in to change notification settings - Fork 0
CommutationRelation
In the context of mathematics and quantum mechanics, the commutation relation describes a fundamental relationship between two operators. The commutation of two operators
This equation means that you first apply operator
The value of the commutator tells us about the relationship between the two operators:
-
If
$[A,B] = 0$ ,$A$ and$B$ commute, which means that the order in which the operators are applied does not matter. -
If
$[A,B] \neq 0$ ,$A$ and$B$ do not commute, which means the order in which the operators are applied does matter.
One of the most famous examples of non-commutative operators in quantum mechanics is the position operator
where
In more general mathematical contexts, the concept of commutation can be applied to other algebraic structures such as groups, rings, and algebras. The specific interpretation of "commutation" depends on the context, but the general idea of the order of operations mattering remains consistent.