-
Notifications
You must be signed in to change notification settings - Fork 0
OptionPricing
The expression for a European Call option price , derived from the Heston PDE, is shown below, (in the form presented by Crisostomo in CHRSO2014
whence
the log-Heston process characteristic function ΨₗₙSᴛ(ω), C(T, ω), D(T, ω), and the intermediate variables are:
ΨₗₙSᴛ(ω) = exp(C(T, ω) * Ṽ + D(T, ω) * V₀ + i * ω * ln(S₀ * e^(r * T)))
C(T, ω) = λ * (r₋(ω) * T - (2 / η²) * ln((1 - g(ω) * f(ω, T)) / (1 - g(ω))))
D(T, ω) = r₋(ω) * (1 - f(ω, T)) / (1 - g(ω) * f(ω, T))
Intermediate variables as functions of ω:
r₊(ω) = (β(ω) + h(ω)) / η²
r₋(ω) = (β(ω) - h(ω)) / η²
h(ω) = √(β(ω)² - 4 * α(ω) * γ)
g(ω) = r₋(ω) / r₊(ω)
α(ω) = -ω² / 2 - i * ω / 2
β(ω) = α(ω) - ρ * η * i * ω
γ = η² / 2