-
Notifications
You must be signed in to change notification settings - Fork 5.3k
Rpi patches raspbian #84
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…ut with 1-Wire module added and DS1307 RTC support
|
Can you have a close look at the config patches. You seem to revert lots of our recent changes (e.g. network scheduling). |
|
Yes, to prepare a defconfig patch please just clone the current tree, make bcmrpi_defconfig, make menuconfig, then make defconfig to export a new defconfig file. |
|
Sorry, you are right, I've used the config from the last image as the base, which reverted lots of changes. Now I merged the latest changes, did a "make bcmrpi_defconfig" then a "make menuconfig" and most of my changes were already enabled, looks like just one request from the forum for the RTC 1-wire DS1307 chip was missing. I enabled it, then I ran a "make savedefconfig" and copied the resulting "defconfig" to bcmrpi_defconfig and as expected, the only diffs are the two for the RTC. Now I'm compiling the new kernel and testing it, if all external hardware devices still works. |
|
Nice, the latest commits where added to the pull requests. The kernel runs without problem and my tests with SPI, 1-wire and I2C work. |
|
Frank, are you sure this patch has no effect on people who are currently using GPIO 4 for other purposes, assuming they don't modprobe the 1 wire driver? |
|
I was pretty sure, but I've just tested it: Accessing the pin like this works when the module is not loaded: |
|
Sorry Frank, I believe I'd replied to this a few days ago, but I must have lost it somehow. Can you resubmit the pull request based against the updated 3.2.27 kernel, without the reverts, and I'll accept it. |
[ Upstream commit 4f4b374 ] This is the much more correct fix for my earlier attempt at: https://lkml.org/lkml/2018/12/10/118 Short recap: - There's not actually a locking issue, it's just lockdep being a bit too eager to complain about a possible deadlock. - Contrary to what I claimed the real problem is recursion on kn->count. Greg pointed me at sysfs_break_active_protection(), used by the scsi subsystem to allow a sysfs file to unbind itself. That would be a real deadlock, which isn't what's happening here. Also, breaking the active protection means we'd need to manually handle all the lifetime fun. - With Rafael we discussed the task_work approach, which kinda works, but has two downsides: It's a functional change for a lockdep annotation issue, and it won't work for the bind file (which needs to get the errno from the driver load function back to userspace). - Greg also asked why this never showed up: To hit this you need to unregister a 2nd driver from the unload code of your first driver. I guess only gpus do that. The bug has always been there, but only with a recent patch series did we add more locks so that lockdep built a chain from unbinding the snd-hda driver to the acpi_video_unregister call. Full lockdep splat: [12301.898799] ============================================ [12301.898805] WARNING: possible recursive locking detected [12301.898811] 4.20.0-rc7+ raspberrypi#84 Not tainted [12301.898815] -------------------------------------------- [12301.898821] bash/5297 is trying to acquire lock: [12301.898826] 00000000f61c6093 (kn->count#39){++++}, at: kernfs_remove_by_name_ns+0x3b/0x80 [12301.898841] but task is already holding lock: [12301.898847] 000000005f634021 (kn->count#39){++++}, at: kernfs_fop_write+0xdc/0x190 [12301.898856] other info that might help us debug this: [12301.898862] Possible unsafe locking scenario: [12301.898867] CPU0 [12301.898870] ---- [12301.898874] lock(kn->count#39); [12301.898879] lock(kn->count#39); [12301.898883] *** DEADLOCK *** [12301.898891] May be due to missing lock nesting notation [12301.898899] 5 locks held by bash/5297: [12301.898903] #0: 00000000cd800e54 (sb_writers#4){.+.+}, at: vfs_write+0x17f/0x1b0 [12301.898915] raspberrypi#1: 000000000465e7c2 (&of->mutex){+.+.}, at: kernfs_fop_write+0xd3/0x190 [12301.898925] raspberrypi#2: 000000005f634021 (kn->count#39){++++}, at: kernfs_fop_write+0xdc/0x190 [12301.898936] raspberrypi#3: 00000000414ef7ac (&dev->mutex){....}, at: device_release_driver_internal+0x34/0x240 [12301.898950] raspberrypi#4: 000000003218fbdf (register_count_mutex){+.+.}, at: acpi_video_unregister+0xe/0x40 [12301.898960] stack backtrace: [12301.898968] CPU: 1 PID: 5297 Comm: bash Not tainted 4.20.0-rc7+ raspberrypi#84 [12301.898974] Hardware name: Hewlett-Packard HP EliteBook 8460p/161C, BIOS 68SCF Ver. F.01 03/11/2011 [12301.898982] Call Trace: [12301.898989] dump_stack+0x67/0x9b [12301.898997] __lock_acquire+0x6ad/0x1410 [12301.899003] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899010] ? find_held_lock+0x2d/0x90 [12301.899017] ? mutex_spin_on_owner+0xe4/0x150 [12301.899023] ? find_held_lock+0x2d/0x90 [12301.899030] ? lock_acquire+0x90/0x180 [12301.899036] lock_acquire+0x90/0x180 [12301.899042] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899049] __kernfs_remove+0x296/0x310 [12301.899055] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899060] ? kernfs_name_hash+0xd/0x80 [12301.899066] ? kernfs_find_ns+0x6c/0x100 [12301.899073] kernfs_remove_by_name_ns+0x3b/0x80 [12301.899080] bus_remove_driver+0x92/0xa0 [12301.899085] acpi_video_unregister+0x24/0x40 [12301.899127] i915_driver_unload+0x42/0x130 [i915] [12301.899160] i915_pci_remove+0x19/0x30 [i915] [12301.899169] pci_device_remove+0x36/0xb0 [12301.899176] device_release_driver_internal+0x185/0x240 [12301.899183] unbind_store+0xaf/0x180 [12301.899189] kernfs_fop_write+0x104/0x190 [12301.899195] __vfs_write+0x31/0x180 [12301.899203] ? rcu_read_lock_sched_held+0x6f/0x80 [12301.899209] ? rcu_sync_lockdep_assert+0x29/0x50 [12301.899216] ? __sb_start_write+0x13c/0x1a0 [12301.899221] ? vfs_write+0x17f/0x1b0 [12301.899227] vfs_write+0xb9/0x1b0 [12301.899233] ksys_write+0x50/0xc0 [12301.899239] do_syscall_64+0x4b/0x180 [12301.899247] entry_SYSCALL_64_after_hwframe+0x49/0xbe [12301.899253] RIP: 0033:0x7f452ac7f7a4 [12301.899259] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 aa f0 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83 [12301.899273] RSP: 002b:00007ffceafa6918 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [12301.899282] RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f452ac7f7a4 [12301.899288] RDX: 000000000000000d RSI: 00005612a1abf7c0 RDI: 0000000000000001 [12301.899295] RBP: 00005612a1abf7c0 R08: 000000000000000a R09: 00005612a1c46730 [12301.899301] R10: 000000000000000a R11: 0000000000000246 R12: 000000000000000d [12301.899308] R13: 0000000000000001 R14: 00007f452af4a740 R15: 000000000000000d Looking around I've noticed that usb and i2c already handle similar recursion problems, where a sysfs file can unbind the same type of sysfs somewhere else in the hierarchy. Relevant commits are: commit 356c05d Author: Alan Stern <stern@rowland.harvard.edu> Date: Mon May 14 13:30:03 2012 -0400 sysfs: get rid of some lockdep false positives commit e9b526f Author: Alexander Sverdlin <alexander.sverdlin@nsn.com> Date: Fri May 17 14:56:35 2013 +0200 i2c: suppress lockdep warning on delete_device Implement the same trick for driver bind/unbind. v2: Put the macro into bus.c (Greg). Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Ramalingam C <ramalingam.c@intel.com> Cc: Arend van Spriel <aspriel@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Bartosz Golaszewski <brgl@bgdev.pl> Cc: Heikki Krogerus <heikki.krogerus@linux.intel.com> Cc: Vivek Gautam <vivek.gautam@codeaurora.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4f4b374 ] This is the much more correct fix for my earlier attempt at: https://lkml.org/lkml/2018/12/10/118 Short recap: - There's not actually a locking issue, it's just lockdep being a bit too eager to complain about a possible deadlock. - Contrary to what I claimed the real problem is recursion on kn->count. Greg pointed me at sysfs_break_active_protection(), used by the scsi subsystem to allow a sysfs file to unbind itself. That would be a real deadlock, which isn't what's happening here. Also, breaking the active protection means we'd need to manually handle all the lifetime fun. - With Rafael we discussed the task_work approach, which kinda works, but has two downsides: It's a functional change for a lockdep annotation issue, and it won't work for the bind file (which needs to get the errno from the driver load function back to userspace). - Greg also asked why this never showed up: To hit this you need to unregister a 2nd driver from the unload code of your first driver. I guess only gpus do that. The bug has always been there, but only with a recent patch series did we add more locks so that lockdep built a chain from unbinding the snd-hda driver to the acpi_video_unregister call. Full lockdep splat: [12301.898799] ============================================ [12301.898805] WARNING: possible recursive locking detected [12301.898811] 4.20.0-rc7+ #84 Not tainted [12301.898815] -------------------------------------------- [12301.898821] bash/5297 is trying to acquire lock: [12301.898826] 00000000f61c6093 (kn->count#39){++++}, at: kernfs_remove_by_name_ns+0x3b/0x80 [12301.898841] but task is already holding lock: [12301.898847] 000000005f634021 (kn->count#39){++++}, at: kernfs_fop_write+0xdc/0x190 [12301.898856] other info that might help us debug this: [12301.898862] Possible unsafe locking scenario: [12301.898867] CPU0 [12301.898870] ---- [12301.898874] lock(kn->count#39); [12301.898879] lock(kn->count#39); [12301.898883] *** DEADLOCK *** [12301.898891] May be due to missing lock nesting notation [12301.898899] 5 locks held by bash/5297: [12301.898903] #0: 00000000cd800e54 (sb_writers#4){.+.+}, at: vfs_write+0x17f/0x1b0 [12301.898915] #1: 000000000465e7c2 (&of->mutex){+.+.}, at: kernfs_fop_write+0xd3/0x190 [12301.898925] #2: 000000005f634021 (kn->count#39){++++}, at: kernfs_fop_write+0xdc/0x190 [12301.898936] #3: 00000000414ef7ac (&dev->mutex){....}, at: device_release_driver_internal+0x34/0x240 [12301.898950] #4: 000000003218fbdf (register_count_mutex){+.+.}, at: acpi_video_unregister+0xe/0x40 [12301.898960] stack backtrace: [12301.898968] CPU: 1 PID: 5297 Comm: bash Not tainted 4.20.0-rc7+ #84 [12301.898974] Hardware name: Hewlett-Packard HP EliteBook 8460p/161C, BIOS 68SCF Ver. F.01 03/11/2011 [12301.898982] Call Trace: [12301.898989] dump_stack+0x67/0x9b [12301.898997] __lock_acquire+0x6ad/0x1410 [12301.899003] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899010] ? find_held_lock+0x2d/0x90 [12301.899017] ? mutex_spin_on_owner+0xe4/0x150 [12301.899023] ? find_held_lock+0x2d/0x90 [12301.899030] ? lock_acquire+0x90/0x180 [12301.899036] lock_acquire+0x90/0x180 [12301.899042] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899049] __kernfs_remove+0x296/0x310 [12301.899055] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899060] ? kernfs_name_hash+0xd/0x80 [12301.899066] ? kernfs_find_ns+0x6c/0x100 [12301.899073] kernfs_remove_by_name_ns+0x3b/0x80 [12301.899080] bus_remove_driver+0x92/0xa0 [12301.899085] acpi_video_unregister+0x24/0x40 [12301.899127] i915_driver_unload+0x42/0x130 [i915] [12301.899160] i915_pci_remove+0x19/0x30 [i915] [12301.899169] pci_device_remove+0x36/0xb0 [12301.899176] device_release_driver_internal+0x185/0x240 [12301.899183] unbind_store+0xaf/0x180 [12301.899189] kernfs_fop_write+0x104/0x190 [12301.899195] __vfs_write+0x31/0x180 [12301.899203] ? rcu_read_lock_sched_held+0x6f/0x80 [12301.899209] ? rcu_sync_lockdep_assert+0x29/0x50 [12301.899216] ? __sb_start_write+0x13c/0x1a0 [12301.899221] ? vfs_write+0x17f/0x1b0 [12301.899227] vfs_write+0xb9/0x1b0 [12301.899233] ksys_write+0x50/0xc0 [12301.899239] do_syscall_64+0x4b/0x180 [12301.899247] entry_SYSCALL_64_after_hwframe+0x49/0xbe [12301.899253] RIP: 0033:0x7f452ac7f7a4 [12301.899259] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 aa f0 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83 [12301.899273] RSP: 002b:00007ffceafa6918 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [12301.899282] RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f452ac7f7a4 [12301.899288] RDX: 000000000000000d RSI: 00005612a1abf7c0 RDI: 0000000000000001 [12301.899295] RBP: 00005612a1abf7c0 R08: 000000000000000a R09: 00005612a1c46730 [12301.899301] R10: 000000000000000a R11: 0000000000000246 R12: 000000000000000d [12301.899308] R13: 0000000000000001 R14: 00007f452af4a740 R15: 000000000000000d Looking around I've noticed that usb and i2c already handle similar recursion problems, where a sysfs file can unbind the same type of sysfs somewhere else in the hierarchy. Relevant commits are: commit 356c05d Author: Alan Stern <stern@rowland.harvard.edu> Date: Mon May 14 13:30:03 2012 -0400 sysfs: get rid of some lockdep false positives commit e9b526f Author: Alexander Sverdlin <alexander.sverdlin@nsn.com> Date: Fri May 17 14:56:35 2013 +0200 i2c: suppress lockdep warning on delete_device Implement the same trick for driver bind/unbind. v2: Put the macro into bus.c (Greg). Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Ramalingam C <ramalingam.c@intel.com> Cc: Arend van Spriel <aspriel@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Bartosz Golaszewski <brgl@bgdev.pl> Cc: Heikki Krogerus <heikki.krogerus@linux.intel.com> Cc: Vivek Gautam <vivek.gautam@codeaurora.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4f4b374 ] This is the much more correct fix for my earlier attempt at: https://lkml.org/lkml/2018/12/10/118 Short recap: - There's not actually a locking issue, it's just lockdep being a bit too eager to complain about a possible deadlock. - Contrary to what I claimed the real problem is recursion on kn->count. Greg pointed me at sysfs_break_active_protection(), used by the scsi subsystem to allow a sysfs file to unbind itself. That would be a real deadlock, which isn't what's happening here. Also, breaking the active protection means we'd need to manually handle all the lifetime fun. - With Rafael we discussed the task_work approach, which kinda works, but has two downsides: It's a functional change for a lockdep annotation issue, and it won't work for the bind file (which needs to get the errno from the driver load function back to userspace). - Greg also asked why this never showed up: To hit this you need to unregister a 2nd driver from the unload code of your first driver. I guess only gpus do that. The bug has always been there, but only with a recent patch series did we add more locks so that lockdep built a chain from unbinding the snd-hda driver to the acpi_video_unregister call. Full lockdep splat: [12301.898799] ============================================ [12301.898805] WARNING: possible recursive locking detected [12301.898811] 4.20.0-rc7+ #84 Not tainted [12301.898815] -------------------------------------------- [12301.898821] bash/5297 is trying to acquire lock: [12301.898826] 00000000f61c6093 (kn->count#39){++++}, at: kernfs_remove_by_name_ns+0x3b/0x80 [12301.898841] but task is already holding lock: [12301.898847] 000000005f634021 (kn->count#39){++++}, at: kernfs_fop_write+0xdc/0x190 [12301.898856] other info that might help us debug this: [12301.898862] Possible unsafe locking scenario: [12301.898867] CPU0 [12301.898870] ---- [12301.898874] lock(kn->count#39); [12301.898879] lock(kn->count#39); [12301.898883] *** DEADLOCK *** [12301.898891] May be due to missing lock nesting notation [12301.898899] 5 locks held by bash/5297: [12301.898903] #0: 00000000cd800e54 (sb_writers#4){.+.+}, at: vfs_write+0x17f/0x1b0 [12301.898915] #1: 000000000465e7c2 (&of->mutex){+.+.}, at: kernfs_fop_write+0xd3/0x190 [12301.898925] #2: 000000005f634021 (kn->count#39){++++}, at: kernfs_fop_write+0xdc/0x190 [12301.898936] #3: 00000000414ef7ac (&dev->mutex){....}, at: device_release_driver_internal+0x34/0x240 [12301.898950] #4: 000000003218fbdf (register_count_mutex){+.+.}, at: acpi_video_unregister+0xe/0x40 [12301.898960] stack backtrace: [12301.898968] CPU: 1 PID: 5297 Comm: bash Not tainted 4.20.0-rc7+ #84 [12301.898974] Hardware name: Hewlett-Packard HP EliteBook 8460p/161C, BIOS 68SCF Ver. F.01 03/11/2011 [12301.898982] Call Trace: [12301.898989] dump_stack+0x67/0x9b [12301.898997] __lock_acquire+0x6ad/0x1410 [12301.899003] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899010] ? find_held_lock+0x2d/0x90 [12301.899017] ? mutex_spin_on_owner+0xe4/0x150 [12301.899023] ? find_held_lock+0x2d/0x90 [12301.899030] ? lock_acquire+0x90/0x180 [12301.899036] lock_acquire+0x90/0x180 [12301.899042] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899049] __kernfs_remove+0x296/0x310 [12301.899055] ? kernfs_remove_by_name_ns+0x3b/0x80 [12301.899060] ? kernfs_name_hash+0xd/0x80 [12301.899066] ? kernfs_find_ns+0x6c/0x100 [12301.899073] kernfs_remove_by_name_ns+0x3b/0x80 [12301.899080] bus_remove_driver+0x92/0xa0 [12301.899085] acpi_video_unregister+0x24/0x40 [12301.899127] i915_driver_unload+0x42/0x130 [i915] [12301.899160] i915_pci_remove+0x19/0x30 [i915] [12301.899169] pci_device_remove+0x36/0xb0 [12301.899176] device_release_driver_internal+0x185/0x240 [12301.899183] unbind_store+0xaf/0x180 [12301.899189] kernfs_fop_write+0x104/0x190 [12301.899195] __vfs_write+0x31/0x180 [12301.899203] ? rcu_read_lock_sched_held+0x6f/0x80 [12301.899209] ? rcu_sync_lockdep_assert+0x29/0x50 [12301.899216] ? __sb_start_write+0x13c/0x1a0 [12301.899221] ? vfs_write+0x17f/0x1b0 [12301.899227] vfs_write+0xb9/0x1b0 [12301.899233] ksys_write+0x50/0xc0 [12301.899239] do_syscall_64+0x4b/0x180 [12301.899247] entry_SYSCALL_64_after_hwframe+0x49/0xbe [12301.899253] RIP: 0033:0x7f452ac7f7a4 [12301.899259] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 aa f0 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83 [12301.899273] RSP: 002b:00007ffceafa6918 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [12301.899282] RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f452ac7f7a4 [12301.899288] RDX: 000000000000000d RSI: 00005612a1abf7c0 RDI: 0000000000000001 [12301.899295] RBP: 00005612a1abf7c0 R08: 000000000000000a R09: 00005612a1c46730 [12301.899301] R10: 000000000000000a R11: 0000000000000246 R12: 000000000000000d [12301.899308] R13: 0000000000000001 R14: 00007f452af4a740 R15: 000000000000000d Looking around I've noticed that usb and i2c already handle similar recursion problems, where a sysfs file can unbind the same type of sysfs somewhere else in the hierarchy. Relevant commits are: commit 356c05d Author: Alan Stern <stern@rowland.harvard.edu> Date: Mon May 14 13:30:03 2012 -0400 sysfs: get rid of some lockdep false positives commit e9b526f Author: Alexander Sverdlin <alexander.sverdlin@nsn.com> Date: Fri May 17 14:56:35 2013 +0200 i2c: suppress lockdep warning on delete_device Implement the same trick for driver bind/unbind. v2: Put the macro into bus.c (Greg). Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Ramalingam C <ramalingam.c@intel.com> Cc: Arend van Spriel <aspriel@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Bartosz Golaszewski <brgl@bgdev.pl> Cc: Heikki Krogerus <heikki.krogerus@linux.intel.com> Cc: Vivek Gautam <vivek.gautam@codeaurora.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
In process_slab(), "p = get_freepointer()" could return a tagged
pointer, but "addr = page_address()" always return a native pointer. As
the result, slab_index() is messed up here,
return (p - addr) / s->size;
All other callers of slab_index() have the same situation where "addr"
is from page_address(), so just need to untag "p".
# cat /sys/kernel/slab/hugetlbfs_inode_cache/alloc_calls
Unable to handle kernel paging request at virtual address 2bff808aa4856d48
Mem abort info:
ESR = 0x96000007
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000007
CM = 0, WnR = 0
swapper pgtable: 64k pages, 48-bit VAs, pgdp = 0000000002498338
[2bff808aa4856d48] pgd=00000097fcfd0003, pud=00000097fcfd0003, pmd=00000097fca30003, pte=00e8008b24850712
Internal error: Oops: 96000007 [#1] SMP
CPU: 3 PID: 79210 Comm: read_all Tainted: G L 5.0.0-rc7+ #84
Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.0.6 07/10/2018
pstate: 00400089 (nzcv daIf +PAN -UAO)
pc : get_map+0x78/0xec
lr : get_map+0xa0/0xec
sp : aeff808989e3f8e0
x29: aeff808989e3f940 x28: ffff800826200000
x27: ffff100012d47000 x26: 9700000000002500
x25: 0000000000000001 x24: 52ff8008200131f8
x23: 52ff8008200130a0 x22: 52ff800820013098
x21: ffff800826200000 x20: ffff100013172ba0
x19: 2bff808a8971bc00 x18: ffff1000148f5538
x17: 000000000000001b x16: 00000000000000ff
x15: ffff1000148f5000 x14: 00000000000000d2
x13: 0000000000000001 x12: 0000000000000000
x11: 0000000020000002 x10: 2bff808aa4856d48
x9 : 0000020000000000 x8 : 68ff80082620ebb0
x7 : 0000000000000000 x6 : ffff1000105da1dc
x5 : 0000000000000000 x4 : 0000000000000000
x3 : 0000000000000010 x2 : 2bff808a8971bc00
x1 : ffff7fe002098800 x0 : ffff80082620ceb0
Process read_all (pid: 79210, stack limit = 0x00000000f65b9361)
Call trace:
get_map+0x78/0xec
process_slab+0x7c/0x47c
list_locations+0xb0/0x3c8
alloc_calls_show+0x34/0x40
slab_attr_show+0x34/0x48
sysfs_kf_seq_show+0x2e4/0x570
kernfs_seq_show+0x12c/0x1a0
seq_read+0x48c/0xf84
kernfs_fop_read+0xd4/0x448
__vfs_read+0x94/0x5d4
vfs_read+0xcc/0x194
ksys_read+0x6c/0xe8
__arm64_sys_read+0x68/0xb0
el0_svc_handler+0x230/0x3bc
el0_svc+0x8/0xc
Code: d3467d2a 9ac92329 8b0a0e6a f9800151 (c85f7d4b)
---[ end trace a383a9a44ff13176 ]---
Kernel panic - not syncing: Fatal exception
SMP: stopping secondary CPUs
SMP: failed to stop secondary CPUs 1-7,32,40,127
Kernel Offset: disabled
CPU features: 0x002,20000c18
Memory Limit: none
---[ end Kernel panic - not syncing: Fatal exception ]---
Link: http://lkml.kernel.org/r/20190220020251.82039-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IPv6 addresses which are used for tunnels are stored in a hash table with reference counting. When a new GRE tunnel is configured, the driver is notified and configures it in hardware. Currently, any change in the tunnel is not applied in the driver. It means that if the remote address is changed, the driver is not aware of this change and the first address will be used. This behavior results in a warning [1] in scenarios such as the following: # ip link add name gre1 type ip6gre local 2000::3 remote 2000::fffe tos inherit ttl inherit # ip link set name gre1 type ip6gre local 2000::3 remote 2000::ffff ttl inherit # ip link delete gre1 The change of the address is not applied in the driver. Currently, the driver uses the remote address which is stored in the 'parms' of the overlay device. When the tunnel is removed, the new IPv6 address is used, the driver tries to release it, but as it is not aware of the change, this address is not configured and it warns about releasing non existing IPv6 address. Fix it by using the IPv6 address which is cached in the IPIP entry, this address is the last one that the driver used, so even in cases such the above, the first address will be released, without any warning. [1]: WARNING: CPU: 1 PID: 2197 at drivers/net/ethernet/mellanox/mlxsw/spectrum.c:2920 mlxsw_sp_ipv6_addr_put+0x146/0x220 [mlxsw_spectrum] ... CPU: 1 PID: 2197 Comm: ip Not tainted 5.17.0-rc8-custom-95062-gc1e5ded51a9a raspberrypi#84 Hardware name: Mellanox Technologies Ltd. MSN4700/VMOD0010, BIOS 5.11 07/12/2021 RIP: 0010:mlxsw_sp_ipv6_addr_put+0x146/0x220 [mlxsw_spectrum] ... Call Trace: <TASK> mlxsw_sp2_ipip_rem_addr_unset_gre6+0xf1/0x120 [mlxsw_spectrum] mlxsw_sp_netdevice_ipip_ol_event+0xdb/0x640 [mlxsw_spectrum] mlxsw_sp_netdevice_event+0xc4/0x850 [mlxsw_spectrum] raw_notifier_call_chain+0x3c/0x50 call_netdevice_notifiers_info+0x2f/0x80 unregister_netdevice_many+0x311/0x6d0 rtnl_dellink+0x136/0x360 rtnetlink_rcv_msg+0x12f/0x380 netlink_rcv_skb+0x49/0xf0 netlink_unicast+0x233/0x340 netlink_sendmsg+0x202/0x440 ____sys_sendmsg+0x1f3/0x220 ___sys_sendmsg+0x70/0xb0 __sys_sendmsg+0x54/0xa0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Fixes: e846efe ("mlxsw: spectrum: Add hash table for IPv6 address mapping") Reported-by: Maksym Yaremchuk <maksymy@nvidia.com> Signed-off-by: Amit Cohen <amcohen@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Link: https://lore.kernel.org/r/20220511115747.238602-1-idosch@nvidia.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
[ Upstream commit 810c2f0 ] IPv6 addresses which are used for tunnels are stored in a hash table with reference counting. When a new GRE tunnel is configured, the driver is notified and configures it in hardware. Currently, any change in the tunnel is not applied in the driver. It means that if the remote address is changed, the driver is not aware of this change and the first address will be used. This behavior results in a warning [1] in scenarios such as the following: # ip link add name gre1 type ip6gre local 2000::3 remote 2000::fffe tos inherit ttl inherit # ip link set name gre1 type ip6gre local 2000::3 remote 2000::ffff ttl inherit # ip link delete gre1 The change of the address is not applied in the driver. Currently, the driver uses the remote address which is stored in the 'parms' of the overlay device. When the tunnel is removed, the new IPv6 address is used, the driver tries to release it, but as it is not aware of the change, this address is not configured and it warns about releasing non existing IPv6 address. Fix it by using the IPv6 address which is cached in the IPIP entry, this address is the last one that the driver used, so even in cases such the above, the first address will be released, without any warning. [1]: WARNING: CPU: 1 PID: 2197 at drivers/net/ethernet/mellanox/mlxsw/spectrum.c:2920 mlxsw_sp_ipv6_addr_put+0x146/0x220 [mlxsw_spectrum] ... CPU: 1 PID: 2197 Comm: ip Not tainted 5.17.0-rc8-custom-95062-gc1e5ded51a9a raspberrypi#84 Hardware name: Mellanox Technologies Ltd. MSN4700/VMOD0010, BIOS 5.11 07/12/2021 RIP: 0010:mlxsw_sp_ipv6_addr_put+0x146/0x220 [mlxsw_spectrum] ... Call Trace: <TASK> mlxsw_sp2_ipip_rem_addr_unset_gre6+0xf1/0x120 [mlxsw_spectrum] mlxsw_sp_netdevice_ipip_ol_event+0xdb/0x640 [mlxsw_spectrum] mlxsw_sp_netdevice_event+0xc4/0x850 [mlxsw_spectrum] raw_notifier_call_chain+0x3c/0x50 call_netdevice_notifiers_info+0x2f/0x80 unregister_netdevice_many+0x311/0x6d0 rtnl_dellink+0x136/0x360 rtnetlink_rcv_msg+0x12f/0x380 netlink_rcv_skb+0x49/0xf0 netlink_unicast+0x233/0x340 netlink_sendmsg+0x202/0x440 ____sys_sendmsg+0x1f3/0x220 ___sys_sendmsg+0x70/0xb0 __sys_sendmsg+0x54/0xa0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Fixes: e846efe ("mlxsw: spectrum: Add hash table for IPv6 address mapping") Reported-by: Maksym Yaremchuk <maksymy@nvidia.com> Signed-off-by: Amit Cohen <amcohen@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Link: https://lore.kernel.org/r/20220511115747.238602-1-idosch@nvidia.com Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
rusty: Improve overview documentation as suggested by Josh Don
Many devices with a single alternate setting do not have a Valid Alternate Setting Control and validation performed by validate_sample_rate_table_v2v3() doesn't work on them and is not really needed. So check the presense of control before sending altsetting validation requests. MOTU Microbook IIc is suffering the most without this check. It takes up to 40 seconds to bootup due to how slow it switches sampling rates: [ 2659.164824] usb 3-2: New USB device found, idVendor=07fd, idProduct=0004, bcdDevice= 0.60 [ 2659.164827] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0 [ 2659.164829] usb 3-2: Product: MicroBook IIc [ 2659.164830] usb 3-2: Manufacturer: MOTU [ 2659.166204] usb 3-2: Found last interface = 3 [ 2679.322298] usb 3-2: No valid sample rate available for 1:1, assuming a firmware bug [ 2679.322306] usb 3-2: 1:1: add audio endpoint 0x3 [ 2679.322321] usb 3-2: Creating new data endpoint #3 [ 2679.322552] usb 3-2: 1:1 Set sample rate 96000, clock 1 [ 2684.362250] usb 3-2: 2:1: cannot get freq (v2/v3): err -110 [ 2694.444700] usb 3-2: No valid sample rate available for 2:1, assuming a firmware bug [ 2694.444707] usb 3-2: 2:1: add audio endpoint 0x84 [ 2694.444721] usb 3-2: Creating new data endpoint #84 [ 2699.482103] usb 3-2: 2:1 Set sample rate 96000, clock 1 Signed-off-by: Alexander Tsoy <alexander@tsoy.me> Link: https://lore.kernel.org/r/20240129121254.3454481-1-alexander@tsoy.me Signed-off-by: Takashi Iwai <tiwai@suse.de>
[ Upstream commit 346f59d ] Many devices with a single alternate setting do not have a Valid Alternate Setting Control and validation performed by validate_sample_rate_table_v2v3() doesn't work on them and is not really needed. So check the presense of control before sending altsetting validation requests. MOTU Microbook IIc is suffering the most without this check. It takes up to 40 seconds to bootup due to how slow it switches sampling rates: [ 2659.164824] usb 3-2: New USB device found, idVendor=07fd, idProduct=0004, bcdDevice= 0.60 [ 2659.164827] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0 [ 2659.164829] usb 3-2: Product: MicroBook IIc [ 2659.164830] usb 3-2: Manufacturer: MOTU [ 2659.166204] usb 3-2: Found last interface = 3 [ 2679.322298] usb 3-2: No valid sample rate available for 1:1, assuming a firmware bug [ 2679.322306] usb 3-2: 1:1: add audio endpoint 0x3 [ 2679.322321] usb 3-2: Creating new data endpoint #3 [ 2679.322552] usb 3-2: 1:1 Set sample rate 96000, clock 1 [ 2684.362250] usb 3-2: 2:1: cannot get freq (v2/v3): err -110 [ 2694.444700] usb 3-2: No valid sample rate available for 2:1, assuming a firmware bug [ 2694.444707] usb 3-2: 2:1: add audio endpoint 0x84 [ 2694.444721] usb 3-2: Creating new data endpoint #84 [ 2699.482103] usb 3-2: 2:1 Set sample rate 96000, clock 1 Signed-off-by: Alexander Tsoy <alexander@tsoy.me> Link: https://lore.kernel.org/r/20240129121254.3454481-1-alexander@tsoy.me Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 346f59d ] Many devices with a single alternate setting do not have a Valid Alternate Setting Control and validation performed by validate_sample_rate_table_v2v3() doesn't work on them and is not really needed. So check the presense of control before sending altsetting validation requests. MOTU Microbook IIc is suffering the most without this check. It takes up to 40 seconds to bootup due to how slow it switches sampling rates: [ 2659.164824] usb 3-2: New USB device found, idVendor=07fd, idProduct=0004, bcdDevice= 0.60 [ 2659.164827] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0 [ 2659.164829] usb 3-2: Product: MicroBook IIc [ 2659.164830] usb 3-2: Manufacturer: MOTU [ 2659.166204] usb 3-2: Found last interface = 3 [ 2679.322298] usb 3-2: No valid sample rate available for 1:1, assuming a firmware bug [ 2679.322306] usb 3-2: 1:1: add audio endpoint 0x3 [ 2679.322321] usb 3-2: Creating new data endpoint #3 [ 2679.322552] usb 3-2: 1:1 Set sample rate 96000, clock 1 [ 2684.362250] usb 3-2: 2:1: cannot get freq (v2/v3): err -110 [ 2694.444700] usb 3-2: No valid sample rate available for 2:1, assuming a firmware bug [ 2694.444707] usb 3-2: 2:1: add audio endpoint 0x84 [ 2694.444721] usb 3-2: Creating new data endpoint #84 [ 2699.482103] usb 3-2: 2:1 Set sample rate 96000, clock 1 Signed-off-by: Alexander Tsoy <alexander@tsoy.me> Link: https://lore.kernel.org/r/20240129121254.3454481-1-alexander@tsoy.me Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 346f59d ] Many devices with a single alternate setting do not have a Valid Alternate Setting Control and validation performed by validate_sample_rate_table_v2v3() doesn't work on them and is not really needed. So check the presense of control before sending altsetting validation requests. MOTU Microbook IIc is suffering the most without this check. It takes up to 40 seconds to bootup due to how slow it switches sampling rates: [ 2659.164824] usb 3-2: New USB device found, idVendor=07fd, idProduct=0004, bcdDevice= 0.60 [ 2659.164827] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0 [ 2659.164829] usb 3-2: Product: MicroBook IIc [ 2659.164830] usb 3-2: Manufacturer: MOTU [ 2659.166204] usb 3-2: Found last interface = 3 [ 2679.322298] usb 3-2: No valid sample rate available for 1:1, assuming a firmware bug [ 2679.322306] usb 3-2: 1:1: add audio endpoint 0x3 [ 2679.322321] usb 3-2: Creating new data endpoint #3 [ 2679.322552] usb 3-2: 1:1 Set sample rate 96000, clock 1 [ 2684.362250] usb 3-2: 2:1: cannot get freq (v2/v3): err -110 [ 2694.444700] usb 3-2: No valid sample rate available for 2:1, assuming a firmware bug [ 2694.444707] usb 3-2: 2:1: add audio endpoint 0x84 [ 2694.444721] usb 3-2: Creating new data endpoint raspberrypi#84 [ 2699.482103] usb 3-2: 2:1 Set sample rate 96000, clock 1 Signed-off-by: Alexander Tsoy <alexander@tsoy.me> Link: https://lore.kernel.org/r/20240129121254.3454481-1-alexander@tsoy.me Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8ecf3c1 ] Recent additions in BPF like cpu v4 instructions, test_bpf module exhibits the following failures: test_bpf: #82 ALU_MOVSX | BPF_B jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #83 ALU_MOVSX | BPF_H jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #84 ALU64_MOVSX | BPF_B jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #85 ALU64_MOVSX | BPF_H jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #86 ALU64_MOVSX | BPF_W jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #165 ALU_SDIV_X: -6 / 2 = -3 jited:1 ret 2147483645 != -3 (0x7ffffffd != 0xfffffffd)FAIL (1 times) test_bpf: #166 ALU_SDIV_K: -6 / 2 = -3 jited:1 ret 2147483645 != -3 (0x7ffffffd != 0xfffffffd)FAIL (1 times) test_bpf: #169 ALU_SMOD_X: -7 % 2 = -1 jited:1 ret 1 != -1 (0x1 != 0xffffffff)FAIL (1 times) test_bpf: #170 ALU_SMOD_K: -7 % 2 = -1 jited:1 ret 1 != -1 (0x1 != 0xffffffff)FAIL (1 times) test_bpf: #172 ALU64_SMOD_K: -7 % 2 = -1 jited:1 ret 1 != -1 (0x1 != 0xffffffff)FAIL (1 times) test_bpf: #313 BSWAP 16: 0x0123456789abcdef -> 0xefcd eBPF filter opcode 00d7 (@2) unsupported jited:0 301 PASS test_bpf: #314 BSWAP 32: 0x0123456789abcdef -> 0xefcdab89 eBPF filter opcode 00d7 (@2) unsupported jited:0 555 PASS test_bpf: #315 BSWAP 64: 0x0123456789abcdef -> 0x67452301 eBPF filter opcode 00d7 (@2) unsupported jited:0 268 PASS test_bpf: #316 BSWAP 64: 0x0123456789abcdef >> 32 -> 0xefcdab89 eBPF filter opcode 00d7 (@2) unsupported jited:0 269 PASS test_bpf: #317 BSWAP 16: 0xfedcba9876543210 -> 0x1032 eBPF filter opcode 00d7 (@2) unsupported jited:0 460 PASS test_bpf: #318 BSWAP 32: 0xfedcba9876543210 -> 0x10325476 eBPF filter opcode 00d7 (@2) unsupported jited:0 320 PASS test_bpf: #319 BSWAP 64: 0xfedcba9876543210 -> 0x98badcfe eBPF filter opcode 00d7 (@2) unsupported jited:0 222 PASS test_bpf: #320 BSWAP 64: 0xfedcba9876543210 >> 32 -> 0x10325476 eBPF filter opcode 00d7 (@2) unsupported jited:0 273 PASS test_bpf: #344 BPF_LDX_MEMSX | BPF_B eBPF filter opcode 0091 (@5) unsupported jited:0 432 PASS test_bpf: #345 BPF_LDX_MEMSX | BPF_H eBPF filter opcode 0089 (@5) unsupported jited:0 381 PASS test_bpf: #346 BPF_LDX_MEMSX | BPF_W eBPF filter opcode 0081 (@5) unsupported jited:0 505 PASS test_bpf: #490 JMP32_JA: Unconditional jump: if (true) return 1 eBPF filter opcode 0006 (@1) unsupported jited:0 261 PASS test_bpf: Summary: 1040 PASSED, 10 FAILED, [924/1038 JIT'ed] Fix them by adding missing processing. Fixes: daabb2b ("bpf/tests: add tests for cpuv4 instructions") Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/91de862dda99d170697eb79ffb478678af7e0b27.1709652689.git.christophe.leroy@csgroup.eu Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1c82587 ] Devices block sizes may change. One of these cases is a loop device by using ioctl LOOP_SET_BLOCK_SIZE. While this may cause other issues like IO being rejected, in the case of hfsplus, it will allocate a block by using that size and potentially write out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the latter function reads a different io_size. Using a new min_io_size initally set to sb_min_blocksize works for the purposes of the original fix, since it will be set to the max between HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not initialized. Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024 and 4096. The produced KASAN report before the fix looks like this: [ 419.944641] ================================================================== [ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a [ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678 [ 419.947612] [ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84 [ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 419.950035] Call Trace: [ 419.950384] <TASK> [ 419.950676] dump_stack_lvl+0x57/0x78 [ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.951830] print_report+0x14c/0x49e [ 419.952361] ? __virt_addr_valid+0x267/0x278 [ 419.952979] ? kmem_cache_debug_flags+0xc/0x1d [ 419.953561] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.954231] kasan_report+0x89/0xb0 [ 419.954748] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.955367] hfsplus_read_wrapper+0x659/0xa0a [ 419.955948] ? __pfx_hfsplus_read_wrapper+0x10/0x10 [ 419.956618] ? do_raw_spin_unlock+0x59/0x1a9 [ 419.957214] ? _raw_spin_unlock+0x1a/0x2e [ 419.957772] hfsplus_fill_super+0x348/0x1590 [ 419.958355] ? hlock_class+0x4c/0x109 [ 419.958867] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.959499] ? __pfx_string+0x10/0x10 [ 419.960006] ? lock_acquire+0x3e2/0x454 [ 419.960532] ? bdev_name.constprop.0+0xce/0x243 [ 419.961129] ? __pfx_bdev_name.constprop.0+0x10/0x10 [ 419.961799] ? pointer+0x3f0/0x62f [ 419.962277] ? __pfx_pointer+0x10/0x10 [ 419.962761] ? vsnprintf+0x6c4/0xfba [ 419.963178] ? __pfx_vsnprintf+0x10/0x10 [ 419.963621] ? setup_bdev_super+0x376/0x3b3 [ 419.964029] ? snprintf+0x9d/0xd2 [ 419.964344] ? __pfx_snprintf+0x10/0x10 [ 419.964675] ? lock_acquired+0x45c/0x5e9 [ 419.965016] ? set_blocksize+0x139/0x1c1 [ 419.965381] ? sb_set_blocksize+0x6d/0xae [ 419.965742] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.966179] mount_bdev+0x12f/0x1bf [ 419.966512] ? __pfx_mount_bdev+0x10/0x10 [ 419.966886] ? vfs_parse_fs_string+0xce/0x111 [ 419.967293] ? __pfx_vfs_parse_fs_string+0x10/0x10 [ 419.967702] ? __pfx_hfsplus_mount+0x10/0x10 [ 419.968073] legacy_get_tree+0x104/0x178 [ 419.968414] vfs_get_tree+0x86/0x296 [ 419.968751] path_mount+0xba3/0xd0b [ 419.969157] ? __pfx_path_mount+0x10/0x10 [ 419.969594] ? kmem_cache_free+0x1e2/0x260 [ 419.970311] do_mount+0x99/0xe0 [ 419.970630] ? __pfx_do_mount+0x10/0x10 [ 419.971008] __do_sys_mount+0x199/0x1c9 [ 419.971397] do_syscall_64+0xd0/0x135 [ 419.971761] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 419.972233] RIP: 0033:0x7c3cb812972e [ 419.972564] Code: 48 8b 0d f5 46 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d c2 46 0d 00 f7 d8 64 89 01 48 [ 419.974371] RSP: 002b:00007ffe30632548 EFLAGS: 00000286 ORIG_RAX: 00000000000000a5 [ 419.975048] RAX: ffffffffffffffda RBX: 00007ffe306328d8 RCX: 00007c3cb812972e [ 419.975701] RDX: 0000000020000000 RSI: 0000000020000c80 RDI: 00007ffe306325d0 [ 419.976363] RBP: 00007ffe30632720 R08: 00007ffe30632610 R09: 0000000000000000 [ 419.977034] R10: 0000000000200008 R11: 0000000000000286 R12: 0000000000000000 [ 419.977713] R13: 00007ffe306328e8 R14: 00005a0eb298bc68 R15: 00007c3cb8356000 [ 419.978375] </TASK> [ 419.978589] Fixes: 6596528 ("hfsplus: ensure bio requests are not smaller than the hardware sectors") Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com> Link: https://lore.kernel.org/r/20241107114109.839253-1-cascardo@igalia.com Signed-off-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1c82587 ] Devices block sizes may change. One of these cases is a loop device by using ioctl LOOP_SET_BLOCK_SIZE. While this may cause other issues like IO being rejected, in the case of hfsplus, it will allocate a block by using that size and potentially write out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the latter function reads a different io_size. Using a new min_io_size initally set to sb_min_blocksize works for the purposes of the original fix, since it will be set to the max between HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not initialized. Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024 and 4096. The produced KASAN report before the fix looks like this: [ 419.944641] ================================================================== [ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a [ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678 [ 419.947612] [ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84 [ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 419.950035] Call Trace: [ 419.950384] <TASK> [ 419.950676] dump_stack_lvl+0x57/0x78 [ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.951830] print_report+0x14c/0x49e [ 419.952361] ? __virt_addr_valid+0x267/0x278 [ 419.952979] ? kmem_cache_debug_flags+0xc/0x1d [ 419.953561] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.954231] kasan_report+0x89/0xb0 [ 419.954748] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.955367] hfsplus_read_wrapper+0x659/0xa0a [ 419.955948] ? __pfx_hfsplus_read_wrapper+0x10/0x10 [ 419.956618] ? do_raw_spin_unlock+0x59/0x1a9 [ 419.957214] ? _raw_spin_unlock+0x1a/0x2e [ 419.957772] hfsplus_fill_super+0x348/0x1590 [ 419.958355] ? hlock_class+0x4c/0x109 [ 419.958867] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.959499] ? __pfx_string+0x10/0x10 [ 419.960006] ? lock_acquire+0x3e2/0x454 [ 419.960532] ? bdev_name.constprop.0+0xce/0x243 [ 419.961129] ? __pfx_bdev_name.constprop.0+0x10/0x10 [ 419.961799] ? pointer+0x3f0/0x62f [ 419.962277] ? __pfx_pointer+0x10/0x10 [ 419.962761] ? vsnprintf+0x6c4/0xfba [ 419.963178] ? __pfx_vsnprintf+0x10/0x10 [ 419.963621] ? setup_bdev_super+0x376/0x3b3 [ 419.964029] ? snprintf+0x9d/0xd2 [ 419.964344] ? __pfx_snprintf+0x10/0x10 [ 419.964675] ? lock_acquired+0x45c/0x5e9 [ 419.965016] ? set_blocksize+0x139/0x1c1 [ 419.965381] ? sb_set_blocksize+0x6d/0xae [ 419.965742] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.966179] mount_bdev+0x12f/0x1bf [ 419.966512] ? __pfx_mount_bdev+0x10/0x10 [ 419.966886] ? vfs_parse_fs_string+0xce/0x111 [ 419.967293] ? __pfx_vfs_parse_fs_string+0x10/0x10 [ 419.967702] ? __pfx_hfsplus_mount+0x10/0x10 [ 419.968073] legacy_get_tree+0x104/0x178 [ 419.968414] vfs_get_tree+0x86/0x296 [ 419.968751] path_mount+0xba3/0xd0b [ 419.969157] ? __pfx_path_mount+0x10/0x10 [ 419.969594] ? kmem_cache_free+0x1e2/0x260 [ 419.970311] do_mount+0x99/0xe0 [ 419.970630] ? __pfx_do_mount+0x10/0x10 [ 419.971008] __do_sys_mount+0x199/0x1c9 [ 419.971397] do_syscall_64+0xd0/0x135 [ 419.971761] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 419.972233] RIP: 0033:0x7c3cb812972e [ 419.972564] Code: 48 8b 0d f5 46 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d c2 46 0d 00 f7 d8 64 89 01 48 [ 419.974371] RSP: 002b:00007ffe30632548 EFLAGS: 00000286 ORIG_RAX: 00000000000000a5 [ 419.975048] RAX: ffffffffffffffda RBX: 00007ffe306328d8 RCX: 00007c3cb812972e [ 419.975701] RDX: 0000000020000000 RSI: 0000000020000c80 RDI: 00007ffe306325d0 [ 419.976363] RBP: 00007ffe30632720 R08: 00007ffe30632610 R09: 0000000000000000 [ 419.977034] R10: 0000000000200008 R11: 0000000000000286 R12: 0000000000000000 [ 419.977713] R13: 00007ffe306328e8 R14: 00005a0eb298bc68 R15: 00007c3cb8356000 [ 419.978375] </TASK> [ 419.978589] Fixes: 6596528 ("hfsplus: ensure bio requests are not smaller than the hardware sectors") Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com> Link: https://lore.kernel.org/r/20241107114109.839253-1-cascardo@igalia.com Signed-off-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 773704c ] w/ below testcase, it will cause inconsistence in between SIT and SSA. create_null_blk 512 2 1024 1024 mkfs.f2fs -m /dev/nullb0 mount /dev/nullb0 /mnt/f2fs/ touch /mnt/f2fs/file f2fs_io pinfile set /mnt/f2fs/file fallocate -l 4GiB /mnt/f2fs/file F2FS-fs (nullb0): Inconsistent segment (0) type [1, 0] in SSA and SIT CPU: 5 UID: 0 PID: 2398 Comm: fallocate Tainted: G O 6.13.0-rc1 #84 Tainted: [O]=OOT_MODULE Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 Call Trace: <TASK> dump_stack_lvl+0xb3/0xd0 dump_stack+0x14/0x20 f2fs_handle_critical_error+0x18c/0x220 [f2fs] f2fs_stop_checkpoint+0x38/0x50 [f2fs] do_garbage_collect+0x674/0x6e0 [f2fs] f2fs_gc_range+0x12b/0x230 [f2fs] f2fs_allocate_pinning_section+0x5c/0x150 [f2fs] f2fs_expand_inode_data+0x1cc/0x3c0 [f2fs] f2fs_fallocate+0x3c3/0x410 [f2fs] vfs_fallocate+0x15f/0x4b0 __x64_sys_fallocate+0x4a/0x80 x64_sys_call+0x15e8/0x1b80 do_syscall_64+0x68/0x130 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x7f9dba5197ca F2FS-fs (nullb0): Stopped filesystem due to reason: 4 The reason is f2fs_gc_range() may try to migrate block in curseg, however, its SSA block is not uptodate due to the last summary block data is still in cache of curseg. In this patch, we add a condition in f2fs_gc_range() to check whether section is opened or not, and skip block migration for opened section. Fixes: 9703d69 ("f2fs: support file pinning for zoned devices") Reviewed-by: Daeho Jeong <daehojeong@google.com> Cc: Daeho Jeong <daehojeong@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 773704c ] w/ below testcase, it will cause inconsistence in between SIT and SSA. create_null_blk 512 2 1024 1024 mkfs.f2fs -m /dev/nullb0 mount /dev/nullb0 /mnt/f2fs/ touch /mnt/f2fs/file f2fs_io pinfile set /mnt/f2fs/file fallocate -l 4GiB /mnt/f2fs/file F2FS-fs (nullb0): Inconsistent segment (0) type [1, 0] in SSA and SIT CPU: 5 UID: 0 PID: 2398 Comm: fallocate Tainted: G O 6.13.0-rc1 #84 Tainted: [O]=OOT_MODULE Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 Call Trace: <TASK> dump_stack_lvl+0xb3/0xd0 dump_stack+0x14/0x20 f2fs_handle_critical_error+0x18c/0x220 [f2fs] f2fs_stop_checkpoint+0x38/0x50 [f2fs] do_garbage_collect+0x674/0x6e0 [f2fs] f2fs_gc_range+0x12b/0x230 [f2fs] f2fs_allocate_pinning_section+0x5c/0x150 [f2fs] f2fs_expand_inode_data+0x1cc/0x3c0 [f2fs] f2fs_fallocate+0x3c3/0x410 [f2fs] vfs_fallocate+0x15f/0x4b0 __x64_sys_fallocate+0x4a/0x80 x64_sys_call+0x15e8/0x1b80 do_syscall_64+0x68/0x130 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x7f9dba5197ca F2FS-fs (nullb0): Stopped filesystem due to reason: 4 The reason is f2fs_gc_range() may try to migrate block in curseg, however, its SSA block is not uptodate due to the last summary block data is still in cache of curseg. In this patch, we add a condition in f2fs_gc_range() to check whether section is opened or not, and skip block migration for opened section. Fixes: 9703d69 ("f2fs: support file pinning for zoned devices") Reviewed-by: Daeho Jeong <daehojeong@google.com> Cc: Daeho Jeong <daehojeong@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 90d5c9b ] ============================= [ BUG: Invalid wait context ] 6.13.0-rc1 #84 Tainted: G O ----------------------------- cat/56160 is trying to lock: ffff888105c86648 (&cprc->stat_lock){+.+.}-{3:3}, at: update_general_status+0x32a/0x8c0 [f2fs] other info that might help us debug this: context-{5:5} 2 locks held by cat/56160: #0: ffff88810a002a98 (&p->lock){+.+.}-{4:4}, at: seq_read_iter+0x56/0x4c0 #1: ffffffffa0462638 (f2fs_stat_lock){....}-{2:2}, at: stat_show+0x29/0x1020 [f2fs] stack backtrace: CPU: 0 UID: 0 PID: 56160 Comm: cat Tainted: G O 6.13.0-rc1 #84 Tainted: [O]=OOT_MODULE Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 Call Trace: <TASK> dump_stack_lvl+0x88/0xd0 dump_stack+0x14/0x20 __lock_acquire+0x8d4/0xbb0 lock_acquire+0xd6/0x300 _raw_spin_lock+0x38/0x50 update_general_status+0x32a/0x8c0 [f2fs] stat_show+0x50/0x1020 [f2fs] seq_read_iter+0x116/0x4c0 seq_read+0xfa/0x130 full_proxy_read+0x66/0x90 vfs_read+0xc4/0x350 ksys_read+0x74/0xf0 __x64_sys_read+0x1d/0x20 x64_sys_call+0x17d9/0x1b80 do_syscall_64+0x68/0x130 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x7f2ca53147e2 - seq_read - stat_show - raw_spin_lock_irqsave(&f2fs_stat_lock, flags) : f2fs_stat_lock is raw_spinlock_t type variable - update_general_status - spin_lock(&sbi->cprc_info.stat_lock); : stat_lock is spinlock_t type variable The root cause is the lock order is incorrect [1], we should not acquire spinlock_t lock after raw_spinlock_t lock, as if CONFIG_PREEMPT_LOCK is on, spinlock_t is implemented based on rtmutex, which can sleep after holding the lock. To fix this issue, let's use change f2fs_stat_lock lock type from raw_spinlock_t to spinlock_t, it's safe due to: - we don't need to use raw version of spinlock as the path is not performance sensitive. - we don't need to use irqsave version of spinlock as it won't be used in irq context. Quoted from [1]: "Extend lockdep to validate lock wait-type context. The current wait-types are: LD_WAIT_FREE, /* wait free, rcu etc.. */ LD_WAIT_SPIN, /* spin loops, raw_spinlock_t etc.. */ LD_WAIT_CONFIG, /* CONFIG_PREEMPT_LOCK, spinlock_t etc.. */ LD_WAIT_SLEEP, /* sleeping locks, mutex_t etc.. */ Where lockdep validates that the current lock (the one being acquired) fits in the current wait-context (as generated by the held stack). This ensures that there is no attempt to acquire mutexes while holding spinlocks, to acquire spinlocks while holding raw_spinlocks and so on. In other words, its a more fancy might_sleep()." [1] https://lore.kernel.org/all/20200321113242.427089655@linutronix.de Fixes: 98237fc ("f2fs: use spin_lock to avoid hang") Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 90d5c9b ] ============================= [ BUG: Invalid wait context ] 6.13.0-rc1 #84 Tainted: G O ----------------------------- cat/56160 is trying to lock: ffff888105c86648 (&cprc->stat_lock){+.+.}-{3:3}, at: update_general_status+0x32a/0x8c0 [f2fs] other info that might help us debug this: context-{5:5} 2 locks held by cat/56160: #0: ffff88810a002a98 (&p->lock){+.+.}-{4:4}, at: seq_read_iter+0x56/0x4c0 #1: ffffffffa0462638 (f2fs_stat_lock){....}-{2:2}, at: stat_show+0x29/0x1020 [f2fs] stack backtrace: CPU: 0 UID: 0 PID: 56160 Comm: cat Tainted: G O 6.13.0-rc1 #84 Tainted: [O]=OOT_MODULE Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 Call Trace: <TASK> dump_stack_lvl+0x88/0xd0 dump_stack+0x14/0x20 __lock_acquire+0x8d4/0xbb0 lock_acquire+0xd6/0x300 _raw_spin_lock+0x38/0x50 update_general_status+0x32a/0x8c0 [f2fs] stat_show+0x50/0x1020 [f2fs] seq_read_iter+0x116/0x4c0 seq_read+0xfa/0x130 full_proxy_read+0x66/0x90 vfs_read+0xc4/0x350 ksys_read+0x74/0xf0 __x64_sys_read+0x1d/0x20 x64_sys_call+0x17d9/0x1b80 do_syscall_64+0x68/0x130 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x7f2ca53147e2 - seq_read - stat_show - raw_spin_lock_irqsave(&f2fs_stat_lock, flags) : f2fs_stat_lock is raw_spinlock_t type variable - update_general_status - spin_lock(&sbi->cprc_info.stat_lock); : stat_lock is spinlock_t type variable The root cause is the lock order is incorrect [1], we should not acquire spinlock_t lock after raw_spinlock_t lock, as if CONFIG_PREEMPT_LOCK is on, spinlock_t is implemented based on rtmutex, which can sleep after holding the lock. To fix this issue, let's use change f2fs_stat_lock lock type from raw_spinlock_t to spinlock_t, it's safe due to: - we don't need to use raw version of spinlock as the path is not performance sensitive. - we don't need to use irqsave version of spinlock as it won't be used in irq context. Quoted from [1]: "Extend lockdep to validate lock wait-type context. The current wait-types are: LD_WAIT_FREE, /* wait free, rcu etc.. */ LD_WAIT_SPIN, /* spin loops, raw_spinlock_t etc.. */ LD_WAIT_CONFIG, /* CONFIG_PREEMPT_LOCK, spinlock_t etc.. */ LD_WAIT_SLEEP, /* sleeping locks, mutex_t etc.. */ Where lockdep validates that the current lock (the one being acquired) fits in the current wait-context (as generated by the held stack). This ensures that there is no attempt to acquire mutexes while holding spinlocks, to acquire spinlocks while holding raw_spinlocks and so on. In other words, its a more fancy might_sleep()." [1] https://lore.kernel.org/all/20200321113242.427089655@linutronix.de Fixes: 98237fc ("f2fs: use spin_lock to avoid hang") Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
see http://www.raspberrypi.org/phpBB3/viewtopic.php?p=149799#p149799
asb from the forum suggested a pull request. The static allocation of the GPIO pin for w1, or maybe any other side effects of the w1-system (it's timing critical) should be no problem, as long as you don't load the module.