-
Notifications
You must be signed in to change notification settings - Fork 98
MOVDQA,VMOVDQA32_64
MOVDQA / VMOVDQA / VMOVDQA32 / VMOVDQA64 — Move Aligned Packed Integer Values
Opcode/ Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
66 0F 6F /r MOVDQA xmm1, xmm2/m128 | A | V/V | SSE2 | Move aligned packed integer values from xmm2/mem to xmm1. |
66 0F 7F /r MOVDQA xmm2/m128, xmm1 | B | V/V | SSE2 | Move aligned packed integer values from xmm1 to xmm2/mem. |
VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, xmm2/m128 | A | V/V | AVX | Move aligned packed integer values from xmm2/mem to xmm1. |
VEX.128.66.0F.WIG 7F /r VMOVDQA xmm2/m128, xmm1 | B | V/V | AVX | Move aligned packed integer values from xmm1 to xmm2/mem. |
VEX.256.66.0F.WIG 6F /r VMOVDQA ymm1, ymm2/m256 | A | V/V | AVX | Move aligned packed integer values from ymm2/mem to ymm1. |
VEX.256.66.0F.WIG 7F /r VMOVDQA ymm2/m256, ymm1 | B | V/V | AVX | Move aligned packed integer values from ymm1 to ymm2/mem. |
EVEX.128.66.0F.W0 6F /r VMOVDQA32 xmm1 {k1}{z}, xmm2/m128 | C | V/V | AVX512VL AVX512F | Move aligned packed doubleword integer values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.66.0F.W0 6F /r VMOVDQA32 ymm1 {k1}{z}, ymm2/m256 | C | V/V | AVX512VL AVX512F | Move aligned packed doubleword integer values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.66.0F.W0 6F /r VMOVDQA32 zmm1 {k1}{z}, zmm2/m512 | C | V/V | AVX512F | Move aligned packed doubleword integer values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.66.0F.W0 7F /r VMOVDQA32 xmm2/m128 {k1}{z}, xmm1 | D | V/V | AVX512VL AVX512F | Move aligned packed doubleword integer values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.66.0F.W0 7F /r VMOVDQA32 ymm2/m256 {k1}{z}, ymm1 | D | V/V | AVX512VL AVX512F | Move aligned packed doubleword integer values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.66.0F.W0 7F /r VMOVDQA32 zmm2/m512 {k1}{z}, zmm1 | D | V/V | AVX512F | Move aligned packed doubleword integer values from zmm1 to zmm2/m512 using writemask k1. |
EVEX.128.66.0F.W1 6F /r VMOVDQA64 xmm1 {k1}{z}, xmm2/m128 | C | V/V | AVX512VL AVX512F | Move aligned quadword integer values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.66.0F.W1 6F /r VMOVDQA64 ymm1 {k1}{z}, ymm2/m256 | C | V/V | AVX512VL AVX512F | Move aligned quadword integer values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.66.0F.W1 6F /r VMOVDQA64 zmm1 {k1}{z}, zmm2/m512 | C | V/V | AVX512F | Move aligned packed quadword integer values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.66.0F.W1 7F /r VMOVDQA64 xmm2/m128 {k1}{z}, xmm1 | D | V/V | AVX512VL AVX512F | Move aligned packed quadword integer values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.66.0F.W1 7F /r VMOVDQA64 ymm2/m256 {k1}{z}, ymm1 | D | V/V | AVX512VL AVX512F | Move aligned packed quadword integer values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.66.0F.W1 7F /r VMOVDQA64 zmm2/m512 {k1}{z}, zmm1 | D | V/V | AVX512F | Move aligned packed quadword integer values from zmm1 to zmm2/m512 using writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
B | NA | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
C | Full Mem | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
D | Full Mem | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX encoded versions:
Moves 128, 256 or 512 bits of packed doubleword/quadword integer values from the source operand (the second operand) to the destination operand (the first operand). This instruction can be used to load a vector register from an int32/int64 memory location, to store the contents of a vector register into an int32/int64 memory location, or to move data between two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16 (EVEX.128)/32(EVEX.256)/64(EVEX.512)-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction.
The destination operand is updated at 32-bit (VMOVDQA32) or 64-bit (VMOVDQA64) granularity according to the writemask.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction. Bits (MAXVL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← SRC[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]← SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged*
; merging-masking
FI;
ENDFOR;
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← SRC[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← SRC[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]← SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged*
; merging-masking
FI;
ENDFOR;
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← SRC[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
DEST[255:0] ← SRC[255:0]
DEST[MAXVL-1:256] ← 0
DEST[255:0] ← SRC[255:0]
DEST[127:0] ← SRC[127:0]
DEST[MAXVL-1:128] ← 0
DEST[127:0] ← SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)
DEST[127:0] ← SRC[127:0]
VMOVDQA32 __m512i _mm512_load_epi32( void * sa);
VMOVDQA32 __m512i _mm512_mask_load_epi32(__m512i s, __mmask16 k, void * sa);
VMOVDQA32 __m512i _mm512_maskz_load_epi32( __mmask16 k, void * sa);
VMOVDQA32 void _mm512_store_epi32(void * d, __m512i a);
VMOVDQA32 void _mm512_mask_store_epi32(void * d, __mmask16 k, __m512i a);
VMOVDQA32 __m256i _mm256_mask_load_epi32(__m256i s, __mmask8 k, void * sa);
VMOVDQA32 __m256i _mm256_maskz_load_epi32( __mmask8 k, void * sa);
VMOVDQA32 void _mm256_store_epi32(void * d, __m256i a);
VMOVDQA32 void _mm256_mask_store_epi32(void * d, __mmask8 k, __m256i a);
VMOVDQA32 __m128i _mm_mask_load_epi32(__m128i s, __mmask8 k, void * sa);
VMOVDQA32 __m128i _mm_maskz_load_epi32( __mmask8 k, void * sa);
VMOVDQA32 void _mm_store_epi32(void * d, __m128i a);
VMOVDQA32 void _mm_mask_store_epi32(void * d, __mmask8 k, __m128i a);
VMOVDQA64 __m512i _mm512_load_epi64( void * sa);
VMOVDQA64 __m512i _mm512_mask_load_epi64(__m512i s, __mmask8 k, void * sa);
VMOVDQA64 __m512i _mm512_maskz_load_epi64( __mmask8 k, void * sa);
VMOVDQA64 void _mm512_store_epi64(void * d, __m512i a);
VMOVDQA64 void _mm512_mask_store_epi64(void * d, __mmask8 k, __m512i a);
VMOVDQA64 __m256i _mm256_mask_load_epi64(__m256i s, __mmask8 k, void * sa);
VMOVDQA64 __m256i _mm256_maskz_load_epi64( __mmask8 k, void * sa);
VMOVDQA64 void _mm256_store_epi64(void * d, __m256i a);
VMOVDQA64 void _mm256_mask_store_epi64(void * d, __mmask8 k, __m256i a);
VMOVDQA64 __m128i _mm_mask_load_epi64(__m128i s, __mmask8 k, void * sa);
VMOVDQA64 __m128i _mm_maskz_load_epi64( __mmask8 k, void * sa);
VMOVDQA64 void _mm_store_epi64(void * d, __m128i a);
VMOVDQA64 void _mm_mask_store_epi64(void * d, __mmask8 k, __m128i a);
MOVDQA void __m256i _mm256_load_si256 (__m256i * p);
MOVDQA _mm256_store_si256(_m256i *p, __m256i a);
MOVDQA __m128i _mm_load_si128 (__m128i * p);
MOVDQA void _mm_store_si128(__m128i *p, __m128i a);
None
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2; EVEX-encoded instruction, see Exceptions Type E1.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018