-
Notifications
You must be signed in to change notification settings - Fork 98
MULSD
MULSD — Multiply Scalar Double-Precision Floating-Point Value
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
F2 0F 59 /r MULSD xmm1,xmm2/m64 | A | V/V | SSE2 | Multiply the low double-precision floating-point value in xmm2/m64 by low double-precision floating-point value in xmm1. |
VEX.NDS.LIG.F2.0F.WIG 59 /r VMULSD xmm1,xmm2, xmm3/m64 | B | V/V | AVX | Multiply the low double-precision floating-point value in xmm3/m64 by low double-precision floating-point value in xmm2. |
EVEX.NDS.LIG.F2.0F.W1 59 /r VMULSD xmm1 {k1}{z}, xmm2, xmm3/m64 {er} | C | V/V | AVX512F | Multiply the low double-precision floating-point value in xmm3/m64 by low double-precision floating-point value in xmm2. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
B | NA | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
C | Tuple1 Scalar | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Multiplies the low double-precision floating-point value in the second source operand by the low double-precision floating-point value in the first source operand, and stores the double-precision floating-point result in the destination operand. The second source operand can be an XMM register or a 64-bit memory location. The first source operand and the destination operands are XMM registers.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL- 1:64) of the corresponding destination register remain unchanged.
VEX.128 and EVEX encoded version: The quadword at bits 127:64 of the destination operand is copied from the same bits of the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the writemask.
Software should ensure VMULSD is encoded with VEX.L=0. Encoding VMULSD with VEX.L=1 may encounter unpredictable behavior across different processor generations.
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN
DEST[63:0] ← SRC1[63:0] * SRC2[63:0]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE
; zeroing-masking
THEN DEST[63:0] ← 0
FI
FI;
ENDFOR
DEST[127:64] ← SRC1[127:64]
DEST[MAXVL-1:128] ← 0
DEST[63:0] ←SRC1[63:0] * SRC2[63:0]
DEST[127:64] ←SRC1[127:64]
DEST[MAXVL-1:128] ←0
DEST[63:0] ←DEST[63:0] * SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)
VMULSD __m128d _mm_mask_mul_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_maskz_mul_sd( __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_mul_round_sd( __m128d a, __m128d b, int);
VMULSD __m128d _mm_mask_mul_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMULSD __m128d _mm_maskz_mul_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MULSD __m128d _mm_mul_sd (__m128d a, __m128d b)
Overflow, Underflow, Invalid, Precision, Denormal
Non-EVEX-encoded instruction, see Exceptions Type 3. EVEX-encoded instruction, see Exceptions Type E3.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018