Skip to content

VPMOVDB_VPMOVSDB_VPMOVUSDB

Henk-Jan Lebbink edited this page Jun 5, 2018 · 12 revisions

VPMOVDB / VPMOVSDB / VPMOVUSDB — Down Convert DWord to Byte

Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description
EVEX.128.F3.0F38.W0 31 /r VPMOVDB xmm1/m32 {k1}{z}, xmm2 A V/V AVX512VL AVX512F Converts 4 packed double-word integers from xmm2 into 4 packed byte integers in xmm1/m32 with truncation under writemask k1.
EVEX.128.F3.0F38.W0 21 /r VPMOVSDB xmm1/m32 {k1}{z}, xmm2 A V/V AVX512VL AVX512F Converts 4 packed signed double-word integers from xmm2 into 4 packed signed byte integers in xmm1/m32 using signed saturation under writemask k1.
EVEX.128.F3.0F38.W0 11 /r VPMOVUSDB xmm1/m32 {k1}{z}, xmm2 A V/V AVX512VL AVX512F Converts 4 packed unsigned double-word integers from xmm2 into 4 packed unsigned byte integers in xmm1/m32 using unsigned saturation under writemask k1.
EVEX.256.F3.0F38.W0 31 /r VPMOVDB xmm1/m64 {k1}{z}, ymm2 A V/V AVX512VL AVX512F Converts 8 packed double-word integers from ymm2 into 8 packed byte integers in xmm1/m64 with truncation under writemask k1.
EVEX.256.F3.0F38.W0 21 /r VPMOVSDB xmm1/m64 {k1}{z}, ymm2 A V/V AVX512VL AVX512F Converts 8 packed signed double-word integers from ymm2 into 8 packed signed byte integers in xmm1/m64 using signed saturation under writemask k1.
EVEX.256.F3.0F38.W0 11 /r VPMOVUSDB xmm1/m64 {k1}{z}, ymm2 A V/V AVX512VL AVX512F Converts 8 packed unsigned double-word integers from ymm2 into 8 packed unsigned byte integers in xmm1/m64 using unsigned saturation under writemask k1.
EVEX.512.F3.0F38.W0 31 /r VPMOVDB xmm1/m128 {k1}{z}, zmm2 A V/V AVX512F Converts 16 packed double-word integers from zmm2 into 16 packed byte integers in xmm1/m128 with truncation under writemask k1.
EVEX.512.F3.0F38.W0 21 /r VPMOVSDB xmm1/m128 {k1}{z}, zmm2 A V/V AVX512F Converts 16 packed signed double-word integers from zmm2 into 16 packed signed byte integers in xmm1/m128 using signed saturation under writemask k1.
EVEX.512.F3.0F38.W0 11 /r VPMOVUSDB xmm1/m128 {k1}{z}, zmm2 A V/V AVX512F Converts 16 packed unsigned double-word integers from zmm2 into 16 packed unsigned byte integers in xmm1/m128 using unsigned saturation under writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Quarter Mem ModRM:r/m (w) ModRM:reg (r) NA NA

Description

VPMOVDB down converts 32-bit integer elements in the source operand (the second operand) into packed bytes using truncation. VPMOVSDB converts signed 32-bit integers into packed signed bytes using signed saturation. VPMOVUSDB convert unsigned double-word values into unsigned byte values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a XMM register or a 128/64/32-bit memory location.

Down-converted byte elements are written to the destination operand (the first operand) from the least-significant byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAXVL-1:128/64/32) of the register destination are zeroed.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVDB instruction (EVEX encoded versions) when dest is a register

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j0 TO KL-1
        ij * 8
        mj * 32
        IF k1[j] OR *no writemask*
            THEN DEST[i+7:i] ← TruncateDoubleWordToByte (SRC[m+31:m])
            ELSE 
                IF *merging-masking*
                            ; merging-masking
                    THEN *DEST[i+7:i] remains unchanged*
                    ELSE *zeroing-masking*
                            ; zeroing-masking
                        DEST[i+7:i] ← 0
                FI
        FI;
    ENDFOR
    DEST[MAXVL-1:VL/4] ← 0;

VPMOVDB instruction (EVEX encoded versions) when dest is memory

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j0 TO KL-1
        ij * 8
        mj * 32
        IF k1[j] OR *no writemask*
            THEN DEST[i+7:i] ← TruncateDoubleWordToByte (SRC[m+31:m])
            ELSE *DEST[i+7:i] remains unchanged*
                            ; merging-masking
        FI;
    ENDFOR

VPMOVSDB instruction (EVEX encoded versions) when dest is a register

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j0 TO KL-1
        ij * 8
        mj * 32
        IF k1[j] OR *no writemask*
            THEN DEST[i+7:i] ← SaturateSignedDoubleWordToByte (SRC[m+31:m])
            ELSE 
                IF *merging-masking*
                            ; merging-masking
                    THEN *DEST[i+7:i] remains unchanged*
                    ELSE *zeroing-masking*
                            ; zeroing-masking
                        DEST[i+7:i] ← 0
                FI
        FI;
    ENDFOR
    DEST[MAXVL-1:VL/4] ← 0;

VPMOVSDB instruction (EVEX encoded versions) when dest is memory

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j0 TO KL-1
        ij * 8
        mj * 32
        IF k1[j] OR *no writemask*
            THEN DEST[i+7:i] ← SaturateSignedDoubleWordToByte (SRC[m+31:m])
            ELSE *DEST[i+7:i] remains unchanged*
                            ; merging-masking
        FI;
    ENDFOR

VPMOVUSDB instruction (EVEX encoded versions) when dest is a register

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j0 TO KL-1
        ij * 8
        mj * 32
        IF k1[j] OR *no writemask*
            THEN DEST[i+7:i] ← SaturateUnsignedDoubleWordToByte (SRC[m+31:m])
            ELSE 
                IF *merging-masking*
                            ; merging-masking
                    THEN *DEST[i+7:i] remains unchanged*
                    ELSE *zeroing-masking*
                            ; zeroing-masking
                        DEST[i+7:i] ← 0
                FI
        FI;
    ENDFOR
    DEST[MAXVL-1:VL/4] ← 0;
VPMOVUSDB instruction (EVEX encoded versions) when dest is memory
    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j0 TO KL-1
        ij * 8
        mj * 32
        IF k1[j] OR *no writemask*
            THEN DEST[i+7:i] ← SaturateUnsignedDoubleWordToByte (SRC[m+31:m])
            ELSE *DEST[i+7:i] remains unchanged*
                            ; merging-masking
        FI;
    ENDFOR

Intel C/C++ Compiler Intrinsic Equivalents

VPMOVDB __m128i _mm512_cvtepi32_epi8( __m512i a);
VPMOVDB __m128i _mm512_mask_cvtepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVDB __m128i _mm512_maskz_cvtepi32_epi8( __mmask16 k, __m512i a);
VPMOVDB void _mm512_mask_cvtepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVSDB __m128i _mm512_cvtsepi32_epi8( __m512i a);
VPMOVSDB __m128i _mm512_mask_cvtsepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVSDB __m128i _mm512_maskz_cvtsepi32_epi8( __mmask16 k, __m512i a);
VPMOVSDB void _mm512_mask_cvtsepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm512_cvtusepi32_epi8( __m512i a);
VPMOVUSDB __m128i _mm512_mask_cvtusepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm512_maskz_cvtusepi32_epi8( __mmask16 k, __m512i a);
VPMOVUSDB void _mm512_mask_cvtusepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm256_cvtusepi32_epi8(__m256i a);
VPMOVUSDB __m128i _mm256_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVUSDB __m128i _mm256_maskz_cvtusepi32_epi8( __mmask8 k, __m256i b);
VPMOVUSDB void _mm256_mask_cvtusepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVUSDB __m128i _mm_cvtusepi32_epi8(__m128i a);
VPMOVUSDB __m128i _mm_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSDB __m128i _mm_maskz_cvtusepi32_epi8( __mmask8 k, __m128i b);
VPMOVUSDB void _mm_mask_cvtusepi32_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSDB __m128i _mm256_cvtsepi32_epi8(__m256i a);
VPMOVSDB __m128i _mm256_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVSDB __m128i _mm256_maskz_cvtsepi32_epi8( __mmask8 k, __m256i b);
VPMOVSDB void _mm256_mask_cvtsepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVSDB __m128i _mm_cvtsepi32_epi8(__m128i a);
VPMOVSDB __m128i _mm_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSDB __m128i _mm_maskz_cvtsepi32_epi8( __mmask8 k, __m128i b);
VPMOVSDB void _mm_mask_cvtsepi32_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVDB __m128i _mm256_cvtepi32_epi8(__m256i a);
VPMOVDB __m128i _mm256_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVDB __m128i _mm256_maskz_cvtepi32_epi8( __mmask8 k, __m256i b);
VPMOVDB void _mm256_mask_cvtepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVDB __m128i _mm_cvtepi32_epi8(__m128i a);
VPMOVDB __m128i _mm_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVDB __m128i _mm_maskz_cvtepi32_epi8( __mmask8 k, __m128i b);
VPMOVDB void _mm_mask_cvtepi32_storeu_epi8(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E6.

#UD If EVEX.vvvv != 1111B.


Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018

Clone this wiki locally