-
Notifications
You must be signed in to change notification settings - Fork 98
MOVSS
MOVSS — Move or Merge Scalar Single-Precision Floating-Point Value
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
F3 0F 10 /r MOVSS xmm1, xmm2 | A | V/V | SSE | Merge scalar single-precision floating-point value from xmm2 to xmm1 register. |
F3 0F 10 /r MOVSS xmm1, m32 | A | V/V | SSE | Load scalar single-precision floating-point value from m32 to xmm1 register. |
VEX.NDS.LIG.F3.0F.WIG 10 /r VMOVSS xmm1, xmm2, xmm3 | B | V/V | AVX | Merge scalar single-precision floating-point value from xmm2 and xmm3 to xmm1 register |
VEX.LIG.F3.0F.WIG 10 /r VMOVSS xmm1, m32 | D | V/V | AVX | Load scalar single-precision floating-point value from m32 to xmm1 register. |
F3 0F 11 /r MOVSS xmm2/m32, xmm1 | C | V/V | SSE | Move scalar single-precision floating-point value from xmm1 register to xmm2/m32. |
VEX.NDS.LIG.F3.0F.WIG 11 /r VMOVSS xmm1, xmm2, xmm3 | E | V/V | AVX | Move scalar single-precision floating-point value from xmm2 and xmm3 to xmm1 register. |
VEX.LIG.F3.0F.WIG 11 /r VMOVSS m32, xmm1 | C | V/V | AVX | Move scalar single-precision floating-point value from xmm1 register to m32. |
EVEX.NDS.LIG.F3.0F.W0 10 /r VMOVSS xmm1 {k1}{z}, xmm2, xmm3 | B | V/V | AVX512F | Move scalar single-precision floating-point value from xmm2 and xmm3 to xmm1 register under writemask k1. |
EVEX.LIG.F3.0F.W0 10 /r VMOVSS xmm1 {k1}{z}, m32 | F | V/V | AVX512F | Move scalar single-precision floating-point values from m32 to xmm1 under writemask k1. |
EVEX.NDS.LIG.F3.0F.W0 11 /r VMOVSS xmm1 {k1}{z}, xmm2, xmm3 | E | V/V | AVX512F | Move scalar single-precision floating-point value from xmm2 and xmm3 to xmm1 register under writemask k1. |
EVEX.LIG.F3.0F.W0 11 /r VMOVSS m32 {k1}, xmm1 | G | V/V | AVX512F | Move scalar single-precision floating-point values from xmm1 to m32 under writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
B | NA | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
C | NA | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
D | NA | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
E | NA | ModRM:r/m (w) | vvvv (r) | ModRM:reg (r) | NA |
F | Tuple1 Scalar | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
G | Tuple1 Scalar | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
Moves a scalar single-precision floating-point value from the source operand (second operand) to the destination operand (first operand). The source and destination operands can be XMM registers or 32-bit memory locations. This instruction can be used to move a single-precision floating-point value to and from the low doubleword of an XMM register and a 32-bit memory location, or to move a single-precision floating-point value between the low doublewords of two XMM registers. The instruction cannot be used to transfer data between memory locations.
Legacy version: When the source and destination operands are XMM registers, bits (MAXVL-1:32) of the corresponding destination register are unmodified. When the source operand is a memory location and destination operand is an XMM registers, Bits (127:32) of the destination operand is cleared to all 0s, bits MAXVL:128 of the destination operand remains unchanged.
VEX and EVEX encoded register-register syntax: Moves a scalar single-precision floating-point value from the second source operand (the third operand) to the low doubleword element of the destination operand (the first operand). Bits 127:32 of the destination operand are copied from the first source operand (the second operand). Bits (MAXVL-1:128) of the corresponding destination register are zeroed.
VEX and EVEX encoded memory load syntax: When the source operand is a memory location and destination operand is an XMM registers, bits MAXVL:32 of the destination operand is cleared to all 0s.
EVEX encoded versions: The low doubleword of the destination is updated according to the writemask.
Note: For memory store form instruction “VMOVSS m32, xmm1”, VEX.vvvv is reserved and must be 1111b other- wise instruction will #UD. For memory store form instruction “VMOVSS mv {k1}, xmm1”, EVEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
Software should ensure VMOVSS is encoded with VEX.L=0. Encoding VMOVSS with VEX.L=1 may encounter unpredictable behavior across different processor generations.
VMOVSS (EVEX.NDS.LIG.F3.0F.W0 11 /r when the source operand is memory and the destination is an XMM register)
IF k1[0] or *no writemask*
THEN
DEST[31:0] ← SRC[31:0]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE
; zeroing-masking
THEN DEST[31:0] ← 0
FI;
FI;
DEST[MAXVL-1:32] ← 0
VMOVSS (EVEX.NDS.LIG.F3.0F.W0 10 /r when the source operand is an XMM register and the destination is memory)
IF k1[0] or *no writemask*
THEN
DEST[31:0] ← SRC[31:0]
ELSE
*DEST[31:0] remains unchanged*
; merging-masking
FI;
IF k1[0] or *no writemask*
THEN
DEST[31:0] ← SRC2[31:0]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE
; zeroing-masking
THEN DEST[31:0] ← 0
FI;
FI;
DEST[127:32] ← SRC1[127:32]
DEST[MAXVL-1:128] ← 0
DEST[31:0] ←SRC[31:0]
DEST[MAXVL-1:32] (Unmodified)
DEST[31:0] ←SRC2[31:0]
DEST[127:32] ←SRC1[127:32]
DEST[MAXVL-1:128] ←0
DEST[31:0] ←SRC2[31:0]
DEST[127:32] ←SRC1[127:32]
DEST[MAXVL-1:128] ←0
VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination is an XMM register)
DEST[31:0] ←SRC[31:0]
DEST[MAXVL-1:32] ←0
DEST[31:0] ←SRC[31:0]
DEST[31:0] ←SRC[31:0]
DEST[127:32] ←0
DEST[MAXVL-1:128] (Unmodified)
VMOVSS __m128 _mm_mask_load_ss(__m128 s, __mmask8 k, float * p);
VMOVSS __m128 _mm_maskz_load_ss( __mmask8 k, float * p);
VMOVSS __m128 _mm_mask_move_ss(__m128 sh, __mmask8 k, __m128 sl, __m128 a);
VMOVSS __m128 _mm_maskz_move_ss( __mmask8 k, __m128 s, __m128 a);
VMOVSS void _mm_mask_store_ss(float * p, __mmask8 k, __m128 a);
MOVSS __m128 _mm_load_ss(float * p)
MOVSS void_mm_store_ss(float * p, __m128 a)
MOVSS __m128 _mm_move_ss(__m128 a, __m128 b)
None
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B. EVEX-encoded instruction, see Exceptions Type E10.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018