-
Notifications
You must be signed in to change notification settings - Fork 98
VEXTRACTF128_VEXTRACTF32x4_VEXTRACTF64x2_VEXTRACTF32x8_VEXTRACTF64x4
VEXTRACTF128 / VEXTRACTF32x4 / VEXTRACTF64x2 / VEXTRACTF32x8 / VEXTRACTF64x4 — Extra ct Packed Floating-Point Values
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
VEX.256.66.0F3A.W0 19 /r ib VEXTRACTF128 xmm1/m128, ymm2, imm8 | A | V/V | AVX | Extract 128 bits of packed floating-point values from ymm2 and store results in xmm1/m128. |
EVEX.256.66.0F3A.W0 19 /r ib VEXTRACTF32X4 xmm1/m128 {k1}{z}, ymm2, imm8 | C | V/V | AVX512VL AVX512F | Extract 128 bits of packed single-precision floating- point values from ymm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.512.66.0F3A.W0 19 /r ib VEXTRACTF32x4 xmm1/m128 {k1}{z}, zmm2, imm8 | C | V/V | AVX512F | Extract 128 bits of packed single-precision floating- point values from zmm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.256.66.0F3A.W1 19 /r ib VEXTRACTF64X2 xmm1/m128 {k1}{z}, ymm2, imm8 | B | V/V | AVX512VL AVX512DQ | Extract 128 bits of packed double-precision floating-point values from ymm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.512.66.0F3A.W1 19 /r ib VEXTRACTF64X2 xmm1/m128 {k1}{z}, zmm2, imm8 | B | V/V | AVX512DQ | Extract 128 bits of packed double-precision floating-point values from zmm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.512.66.0F3A.W0 1B /r ib VEXTRACTF32X8 ymm1/m256 {k1}{z}, zmm2, imm8 | D | V/V | AVX512DQ | Extract 256 bits of packed single-precision floating- point values from zmm2 and store results in ymm1/m256 subject to writemask k1. |
EVEX.512.66.0F3A.W1 1B /r ib VEXTRACTF64x4 ymm1/m256 {k1}{z}, zmm2, imm8 | C | V/V | AVX512F | Extract 256 bits of packed double-precision floating-point values from zmm2 and store results in ymm1/m256 subject to writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:r/m (w) | ModRM:reg (r) | Imm8 | NA |
B | Tuple2 | ModRM:r/m (w) | ModRM:reg (r) | Imm8 | NA |
C | Tuple4 | ModRM:r/m (w) | ModRM:reg (r) | Imm8 | NA |
D | Tuple8 | ModRM:r/m (w) | ModRM:reg (r) | Imm8 | NA |
VEXTRACTF128/VEXTRACTF32x4 and VEXTRACTF64x2 extract 128-bits of single-precision floating-point values from the source operand (the second operand) and store to the low 128-bit of the destination operand (the first operand). The 128-bit data extraction occurs at an 128-bit granular offset specified by imm8[0] (256-bit) or imm8[1:0] as the multiply factor. The destination may be either a vector register or an 128-bit memory location.
VEXTRACTF32x4: The low 128-bit of the destination operand is updated at 32-bit granularity according to the writemask.
VEXTRACTF32x8 and VEXTRACTF64x4 extract 256-bits of double-precision floating-point values from the source operand (second operand) and store to the low 256-bit of the destination operand (the first operand). The 256-bit data extraction occurs at an 256-bit granular offset specified by imm8[0] (256-bit) or imm8[0] as the multiply factor The destination may be either a vector register or a 256-bit memory location.
VEXTRACTF64x4: The low 256-bit of the destination operand is updated at 64-bit granularity according to the writemask.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The high 6 bits of the immediate are ignored.
If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception.
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] ← SRC1[127:0]
1: TMP_DEST[127:0] ← SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] ← SRC1[127:0]
01: TMP_DEST[127:0] ← SRC1[255:128]
10: TMP_DEST[127:0] ← SRC1[383:256]
11: TMP_DEST[127:0] ← SRC1[511:384]
ESAC.
FI;
FOR j ← 0 TO 3
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:128] ← 0
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] ← SRC1[127:0]
1: TMP_DEST[127:0] ← SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] ← SRC1[127:0]
01: TMP_DEST[127:0] ← SRC1[255:128]
10: TMP_DEST[127:0] ← SRC1[383:256]
11: TMP_DEST[127:0] ← SRC1[511:384]
ESAC.
FI;
FOR j ← 0 TO 3
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged*
; merging-masking
FI;
ENDFOR
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] ← SRC1[127:0]
1: TMP_DEST[127:0] ← SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] ← SRC1[127:0]
01: TMP_DEST[127:0] ← SRC1[255:128]
10: TMP_DEST[127:0] ← SRC1[383:256]
11: TMP_DEST[127:0] ← SRC1[511:384]
ESAC.
FI;
FOR j ← 0 TO 1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← TMP_DEST[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+63:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:128] ← 0
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] ← SRC1[127:0]
1: TMP_DEST[127:0] ← SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] ← SRC1[127:0]
01: TMP_DEST[127:0] ← SRC1[255:128]
10: TMP_DEST[127:0] ← SRC1[383:256]
11: TMP_DEST[127:0] ← SRC1[511:384]
ESAC.
FI;
FOR j ← 0 TO 1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← TMP_DEST[i+63:i]
ELSE *DEST[i+63:i] remains unchanged*
; merging-masking
FI;
ENDFOR
VL = 512
CASE (imm8[0]) OF
0: TMP_DEST[255:0] ← SRC1[255:0]
1: TMP_DEST[255:0] ← SRC1[511:256]
ESAC.
FOR j ← 0 TO 7
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:256] ← 0
CASE (imm8[0]) OF
0: TMP_DEST[255:0] ← SRC1[255:0]
1: TMP_DEST[255:0] ← SRC1[511:256]
ESAC.
FOR j ← 0 TO 7
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged*
; merging-masking
FI;
ENDFOR
VL = 512
CASE (imm8[0]) OF
0: TMP_DEST[255:0] ← SRC1[255:0]
1: TMP_DEST[255:0] ← SRC1[511:256]
ESAC.
FOR j ← 0 TO 3
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← TMP_DEST[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+63:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:256] ← 0
CASE (imm8[0]) OF
0: TMP_DEST[255:0] ← SRC1[255:0]
1: TMP_DEST[255:0] ← SRC1[511:256]
ESAC.
FOR j ← 0 TO 3
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← TMP_DEST[i+63:i]
ELSE
; merging-masking
*DEST[i+63:i] remains unchanged*
FI;
ENDFOR
CASE (imm8[0]) OF
0: DEST[127:0] ←SRC1[127:0]
1: DEST[127:0] ←SRC1[255:128]
ESAC.
CASE (imm8[0]) OF
0: DEST[127:0] ←SRC1[127:0]
1: DEST[127:0] ←SRC1[255:128]
ESAC.
DEST[MAXVL-1:128] ←0
VEXTRACTF32x4 __m128 _mm512_extractf32x4_ps(__m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm512_mask_extractf32x4_ps(__m128 s, __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm512_maskz_extractf32x4_ps( __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_extractf32x4_ps(__m256 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_mask_extractf32x4_ps(__m128 s, __mmask8 k, __m256 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_maskz_extractf32x4_ps( __mmask8 k, __m256 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_extractf32x8_ps(__m512 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_mask_extractf32x8_ps(__m256 s, __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_maskz_extractf32x8_ps( __mmask8 k, __m512 a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_extractf64x2_pd(__m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_mask_extractf64x2_pd(__m128d s, __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_maskz_extractf64x2_pd( __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_extractf64x2_pd(__m256d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_mask_extractf64x2_pd(__m128d s, __mmask8 k, __m256d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_maskz_extractf64x2_pd( __mmask8 k, __m256d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_extractf64x4_pd( __m512d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_mask_extractf64x4_pd(__m256d s, __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_maskz_extractf64x4_pd( __mmask8 k, __m512d a, const int nidx);
VEXTRACTF128 __m128 _mm256_extractf128_ps (__m256 a, int offset);
VEXTRACTF128 __m128d _mm256_extractf128_pd (__m256d a, int offset);
VEXTRACTF128 __m128i_mm256_extractf128_si256(__m256i a, int offset);
None
VEX-encoded instructions, see Exceptions Type 6; EVEX-encoded instructions, see Exceptions Type E6NF.
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018