Skip to content

Conversation

@ming616
Copy link

@ming616 ming616 commented Dec 8, 2016

What changes were proposed in this pull request?

(Please fill in changes proposed in this fix)

How was this patch tested?

(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)
(If this patch involves UI changes, please attach a screenshot; otherwise, remove this)

Please review http://spark.apache.org/contributing.html before opening a pull request.

zsxwing and others added 30 commits September 14, 2016 13:34
…alue can be read thread-safely

## What changes were proposed in this pull request?

Make CollectionAccumulator and SetAccumulator's value can be read thread-safely to fix the ConcurrentModificationException reported in [JIRA](https://issues.apache.org/jira/browse/SPARK-17463).

## How was this patch tested?

Existing tests.

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #15063 from zsxwing/SPARK-17463.

(cherry picked from commit e33bfae)
Signed-off-by: Josh Rosen <joshrosen@databricks.com>
…che.spark.storage.MemoryStore` may lead to memory leak

The expression like `if (memoryMap(taskAttemptId) == 0) memoryMap.remove(taskAttemptId)` in method `releaseUnrollMemoryForThisTask` and `releasePendingUnrollMemoryForThisTask` should be called after release memory operation, whatever `memoryToRelease` is > 0 or not.

If the memory of a task has been set to 0 when calling a `releaseUnrollMemoryForThisTask` or a `releasePendingUnrollMemoryForThisTask` method, the key in the memory map corresponding to that task will never be removed from the hash map.

See the details in [SPARK-17465](https://issues.apache.org/jira/browse/SPARK-17465).

Author: Xing SHI <shi-kou@indetail.co.jp>

Closes #15022 from saturday-shi/SPARK-17465.
## What changes were proposed in this pull request?

 when i use sc.makeRDD below
```
val data3 = sc.makeRDD(Seq())
println(data3.partitions.length)
```
I got an error:
Exception in thread "main" java.lang.IllegalArgumentException: Positive number of slices required

We can fix this bug just modify the last line ,do a check of seq.size
```
  def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = withScope {
    assertNotStopped()
    val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap
    new ParallelCollectionRDD[T](this, seq.map(_._1), math.max(seq.size, defaultParallelism), indexToPrefs)
  }
```

## How was this patch tested?

 manual tests

(If this patch involves UI changes, please attach a screenshot; otherwise, remove this)

Author: codlife <1004910847@qq.com>
Author: codlife <wangjianfei15@otcaix.iscas.ac.cn>

Closes #15077 from codlife/master.

(cherry picked from commit 647ee05)
Signed-off-by: Sean Owen <sowen@cloudera.com>
## What changes were proposed in this pull request?

This PR adds SparkR vignette to branch 2.0, which works as a friendly guidance going through the functionality provided by SparkR.

## How was this patch tested?

R unit test.

Author: junyangq <qianjunyang@gmail.com>
Author: Shivaram Venkataraman <shivaram@cs.berkeley.edu>
Author: Junyang Qian <junyangq@databricks.com>

Closes #15100 from junyangq/SPARKR-vignette-2.0.
SPARK-8029 (#9610) modified shuffle writers to first stage their data to a temporary file in the same directory as the final destination file and then to atomically rename this temporary file at the end of the write job. However, this change introduced the potential for the temporary output file to be leaked if an exception occurs during the write because the shuffle writers' existing error cleanup code doesn't handle deletion of the temp file.

This patch avoids this potential cause of disk-space leaks by adding `finally` blocks to ensure that temp files are always deleted if they haven't been renamed.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #15104 from JoshRosen/cleanup-tmp-data-file-in-shuffle-writer.

(cherry picked from commit 5b8f737)
Signed-off-by: Josh Rosen <joshrosen@databricks.com>
## What changes were proposed in this pull request?
This PR fixes an issue with aggregates that have an empty input, and use a literals as their grouping keys. These aggregates are currently interpreted as aggregates **without** grouping keys, this triggers the ungrouped code path (which aways returns a single row).

This PR fixes the `RemoveLiteralFromGroupExpressions` optimizer rule, which changes the semantics of the Aggregate by eliminating all literal grouping keys.

## How was this patch tested?
Added tests to `SQLQueryTestSuite`.

Author: Herman van Hovell <hvanhovell@databricks.com>

Closes #15101 from hvanhovell/SPARK-17114-3.

(cherry picked from commit d403562)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…removal

This patch makes three minor refactorings to the BlockManager:

- Move the `if (info.tellMaster)` check out of `reportBlockStatus`; this fixes an issue where a debug logging message would incorrectly claim to have reported a block status to the master even though no message had been sent (in case `info.tellMaster == false`). This also makes it easier to write code which unconditionally sends block statuses to the master (which is necessary in another patch of mine).
- Split  `removeBlock()` into two methods, the existing method and an internal `removeBlockInternal()` method which is designed to be called by internal code that already holds a write lock on the block. This is also needed by a followup patch.
- Instead of calling `getCurrentBlockStatus()` in `removeBlock()`, just pass `BlockStatus.empty`; the block status should always be empty following complete removal of a block.

These changes were originally authored as part of a bug fix patch which is targeted at branch-2.0 and master; I've split them out here into their own separate PR in order to make them easier to review and so that the behavior-changing parts of my other patch can be isolated to their own PR.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #15036 from JoshRosen/cache-failure-race-conditions-refactorings-only.

(cherry picked from commit 3d40896)
Signed-off-by: Josh Rosen <joshrosen@databricks.com>
…er as a decimal number token when parsing SQL string

## What changes were proposed in this pull request?

The Antlr lexer we use to tokenize a SQL string may wrongly tokenize a fully qualified identifier as a decimal number token. For example, table identifier `default.123_table` is wrongly tokenized as
```
default // Matches lexer rule IDENTIFIER
.123 // Matches lexer rule DECIMAL_VALUE
_TABLE // Matches lexer rule IDENTIFIER
```

The correct tokenization for `default.123_table` should be:
```
default // Matches lexer rule IDENTIFIER,
. // Matches a single dot
123_TABLE // Matches lexer rule IDENTIFIER
```

This PR fix the Antlr grammar so that it can tokenize fully qualified identifier correctly:
1. Fully qualified table name can be parsed correctly. For example, `select * from database.123_suffix`.
2. Fully qualified column name can be parsed correctly, for example `select a.123_suffix from a`.

### Before change

#### Case 1: Failed to parse fully qualified column name

```
scala> spark.sql("select a.123_column from a").show
org.apache.spark.sql.catalyst.parser.ParseException:
extraneous input '.123' expecting {<EOF>,
...
, IDENTIFIER, BACKQUOTED_IDENTIFIER}(line 1, pos 8)
== SQL ==
select a.123_column from a
--------^^^
```

#### Case 2: Failed to parse fully qualified table name
```
scala> spark.sql("select * from default.123_table")
org.apache.spark.sql.catalyst.parser.ParseException:
extraneous input '.123' expecting {<EOF>,
...
IDENTIFIER, BACKQUOTED_IDENTIFIER}(line 1, pos 21)

== SQL ==
select * from default.123_table
---------------------^^^
```

### After Change

#### Case 1: fully qualified column name, no ParseException thrown
```
scala> spark.sql("select a.123_column from a").show
```

#### Case 2: fully qualified table name, no ParseException thrown
```
scala> spark.sql("select * from default.123_table")
```

## How was this patch tested?

Unit test.

Author: Sean Zhong <seanzhong@databricks.com>

Closes #15006 from clockfly/SPARK-17364.

(cherry picked from commit a6b8182)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…er put() exceptions

## What changes were proposed in this pull request?

If a BlockManager `put()` call failed after the BlockManagerMaster was notified of a block's availability then incomplete cleanup logic in a `finally` block would never send a second block status method to inform the master of the block's unavailability. This, in turn, leads to fetch failures and used to be capable of causing complete job failures before #15037 was fixed.

This patch addresses this issue via multiple small changes:

- The `finally` block now calls `removeBlockInternal` when cleaning up from a failed `put()`; in addition to removing the `BlockInfo` entry (which was _all_ that the old cleanup logic did), this code (redundantly) tries to remove the block from the memory and disk stores (as an added layer of defense against bugs lower down in the stack) and optionally notifies the master of block removal (which now happens during exception-triggered cleanup).
- When a BlockManager receives a request for a block that it does not have it will now notify the master to update its block locations. This ensures that bad metadata pointing to non-existent blocks will eventually be fixed. Note that I could have implemented this logic in the block manager client (rather than in the remote server), but that would introduce the problem of distinguishing between transient and permanent failures; on the server, however, we know definitively that the block isn't present.
- Catch `NonFatal` instead of `Exception` to avoid swallowing `InterruptedException`s thrown from synchronous block replication calls.

This patch depends upon the refactorings in #15036, so that other patch will also have to be backported when backporting this fix.

For more background on this issue, including example logs from a real production failure, see [SPARK-17484](https://issues.apache.org/jira/browse/SPARK-17484).

## How was this patch tested?

Two new regression tests in BlockManagerSuite.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #15085 from JoshRosen/SPARK-17484.

(cherry picked from commit 1202075)
Signed-off-by: Josh Rosen <joshrosen@databricks.com>
## What changes were proposed in this pull request?
This patch bumps the Hadoop version in hadoop-2.7 profile from 2.7.2 to 2.7.3, which was recently released and contained a number of bug fixes.

## How was this patch tested?
The change should be covered by existing tests.

Author: Reynold Xin <rxin@databricks.com>

Closes #15115 from rxin/SPARK-17558.

(cherry picked from commit dca771b)
Signed-off-by: Reynold Xin <rxin@databricks.com>
…relation.

The existing code caches all stats for all columns for each partition
in the driver; for a large relation, this causes extreme memory usage,
which leads to gc hell and application failures.

It seems that only the size in bytes of the data is actually used in the
driver, so instead just colllect that. In executors, the full stats are
still kept, but that's not a big problem; we expect the data to be distributed
and thus not really incur in too much memory pressure in each individual
executor.

There are also potential improvements on the executor side, since the data
being stored currently is very wasteful (e.g. storing boxed types vs.
primitive types for stats). But that's a separate issue.

On a mildly related change, I'm also adding code to catch exceptions in the
code generator since Janino was breaking with the test data I tried this
patch on.

Tested with unit tests and by doing a count a very wide table (20k columns)
with many partitions.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #15112 from vanzin/SPARK-17549.

(cherry picked from commit 39e2bad)
Signed-off-by: Yin Huai <yhuai@databricks.com>
## What changes were proposed in this pull request?

Replace `fetchSize` with `fetchsize` in the docs.

## How was this patch tested?

I manually tested `fetchSize` and `fetchsize`. The latter has an effect. See also [`JdbcUtils.scala#L38`](https://github.com/apache/spark/blob/v2.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/jdbc/JdbcUtils.scala#L38) for the definition of the property.

Author: Daniel Darabos <darabos.daniel@gmail.com>

Closes #14975 from darabos/patch-3.

(cherry picked from commit 69cb049)
Signed-off-by: Sean Owen <sowen@cloudera.com>
https://issues.apache.org/jira/browse/SPARK-17567

## What changes were proposed in this pull request?

Documentation (http://spark.apache.org/docs/latest/api/scala/#org.apache.spark.rdd.RDD) contains broken link to Spark paper (http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf).

I found it elsewhere (https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf) and I hope it is the same one. It should be uploaded to and linked from some Apache controlled storage, so it won't break again.

## How was this patch tested?

Tested manually on local laptop.

Author: Xin Ren <iamshrek@126.com>

Closes #15121 from keypointt/SPARK-17567.

(cherry picked from commit f15d41b)
Signed-off-by: Sean Owen <sowen@cloudera.com>
Fix `<ul> / <li>` problems in SQL scaladoc.

Scaladoc build and manual verification of generated HTML.

Author: Sean Owen <sowen@cloudera.com>

Closes #15117 from srowen/SPARK-17561.

(cherry picked from commit b9323fc)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…rejects the best match when invoked with a vector

## What changes were proposed in this pull request?

This pull request changes the behavior of `Word2VecModel.findSynonyms` so that it will not spuriously reject the best match when invoked with a vector that does not correspond to a word in the model's vocabulary.  Instead of blindly discarding the best match, the changed implementation discards a match that corresponds to the query word (in cases where `findSynonyms` is invoked with a word) or that has an identical angle to the query vector.

## How was this patch tested?

I added a test to `Word2VecSuite` to ensure that the word with the most similar vector from a supplied vector would not be spuriously rejected.

Author: William Benton <willb@redhat.com>

Closes #15105 from willb/fix/findSynonyms.

(cherry picked from commit 25cbbe6)
Signed-off-by: Sean Owen <sowen@cloudera.com>
## What changes were proposed in this pull request?

Remove extra table tags in configurations document.

## How was this patch tested?

Run all test cases and generate document.

Before with extra tag its look like below
![config-wrong1](https://cloud.githubusercontent.com/assets/8075390/18608239/c602bb60-7d01-11e6-875e-f38558997dd3.png)

![config-wrong2](https://cloud.githubusercontent.com/assets/8075390/18608241/cf3b672c-7d01-11e6-935e-1e73f9e6e578.png)

After removing tags its looks like below

![config](https://cloud.githubusercontent.com/assets/8075390/18608245/e156eb8e-7d01-11e6-98aa-3be68d4d1961.png)

![config2](https://cloud.githubusercontent.com/assets/8075390/18608247/e84eecd4-7d01-11e6-9738-a3f7ff8fe834.png)

Author: sandy <phalodi@gmail.com>

Closes #15130 from phalodi/SPARK-17575.

(cherry picked from commit bbe0b1d)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…th/size which is O(n)

This PR fixes all the instances which was fixed in the previous PR.

To make sure, I manually debugged and also checked the Scala source. `length` in [LinearSeqOptimized.scala#L49-L57](https://github.com/scala/scala/blob/2.11.x/src/library/scala/collection/LinearSeqOptimized.scala#L49-L57) is O(n). Also, `size` calls `length` via [SeqLike.scala#L106](https://github.com/scala/scala/blob/2.11.x/src/library/scala/collection/SeqLike.scala#L106).

For debugging, I have created these as below:

```scala
ArrayBuffer(1, 2, 3)
Array(1, 2, 3)
List(1, 2, 3)
Seq(1, 2, 3)
```

and then called `size` and `length` for each to debug.

I ran the bash as below on Mac

```bash
find . -name *.scala -type f -exec grep -il "while (.*\\.length)" {} \; | grep "src/main"
find . -name *.scala -type f -exec grep -il "while (.*\\.size)" {} \; | grep "src/main"
```

and then checked each.

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #15093 from HyukjinKwon/SPARK-17480-followup.

(cherry picked from commit 86c2d39)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…utIteratorAsBytes()

## What changes were proposed in this pull request?

`MemoryStore.putIteratorAsBytes()` may silently lose values when used with `KryoSerializer` because it does not properly close the serialization stream before attempting to deserialize the already-serialized values, which may cause values buffered in Kryo's internal buffers to not be read.

This is the root cause behind a user-reported "wrong answer" bug in PySpark caching reported by bennoleslie on the Spark user mailing list in a thread titled "pyspark persist MEMORY_ONLY vs MEMORY_AND_DISK". Due to Spark 2.0's automatic use of KryoSerializer for "safe" types (such as byte arrays, primitives, etc.) this misuse of serializers manifested itself as silent data corruption rather than a StreamCorrupted error (which you might get from JavaSerializer).

The minimal fix, implemented here, is to close the serialization stream before attempting to deserialize written values. In addition, this patch adds several additional assertions / precondition checks to prevent misuse of `PartiallySerializedBlock` and `ChunkedByteBufferOutputStream`.

## How was this patch tested?

The original bug was masked by an invalid assert in the memory store test cases: the old assert compared two results record-by-record with `zip` but didn't first check that the lengths of the two collections were equal, causing missing records to go unnoticed. The updated test case reproduced this bug.

In addition, I added a new `PartiallySerializedBlockSuite` to unit test that component.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #15043 from JoshRosen/partially-serialized-block-values-iterator-bugfix.

(cherry picked from commit 8faa521)
Signed-off-by: Josh Rosen <joshrosen@databricks.com>
…ist.length/size which is O(n)"

This reverts commit a3bba37.
…th/size which is O(n)

This PR fixes all the instances which was fixed in the previous PR.

To make sure, I manually debugged and also checked the Scala source. `length` in [LinearSeqOptimized.scala#L49-L57](https://github.com/scala/scala/blob/2.11.x/src/library/scala/collection/LinearSeqOptimized.scala#L49-L57) is O(n). Also, `size` calls `length` via [SeqLike.scala#L106](https://github.com/scala/scala/blob/2.11.x/src/library/scala/collection/SeqLike.scala#L106).

For debugging, I have created these as below:

```scala
ArrayBuffer(1, 2, 3)
Array(1, 2, 3)
List(1, 2, 3)
Seq(1, 2, 3)
```

and then called `size` and `length` for each to debug.

I ran the bash as below on Mac

```bash
find . -name *.scala -type f -exec grep -il "while (.*\\.length)" {} \; | grep "src/main"
find . -name *.scala -type f -exec grep -il "while (.*\\.size)" {} \; | grep "src/main"
```

and then checked each.

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #15093 from HyukjinKwon/SPARK-17480-followup.

(cherry picked from commit 86c2d39)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…-name temp view exists

In `SessionCatalog`, we have several operations(`tableExists`, `dropTable`, `loopupRelation`, etc) that handle both temp views and metastore tables/views. This brings some bugs to DDL commands that want to handle temp view only or metastore table/view only. These bugs are:

1. `CREATE TABLE USING` will fail if a same-name temp view exists
2. `Catalog.dropTempView`will un-cache and drop metastore table if a same-name table exists
3. `saveAsTable` will fail or have unexpected behaviour if a same-name temp view exists.

These bug fixes are pulled out from #14962 and targets both master and 2.0 branch

new regression tests

Author: Wenchen Fan <wenchen@databricks.com>

Closes #15099 from cloud-fan/fix-view.

(cherry picked from commit 3fe630d)
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
## What changes were proposed in this pull request?

Call `hostname -f` to get fully qualified host name

## How was this patch tested?

Jenkins tests of course, but also verified output of command on OS X and Linux

Author: Sean Owen <sowen@cloudera.com>

Closes #15129 from srowen/SPARK-17546.

(cherry picked from commit 342c0e6)
Signed-off-by: Sean Owen <sowen@cloudera.com>
## What changes were proposed in this pull request?

This PR fixes a warning message as below:

```
[WARNING] .../UnsafeInMemorySorter.java:284: warning: [static] static method should be qualified by type name, TaskMemoryManager, instead of by an expression
[WARNING]       currentPageNumber = memoryManager.decodePageNumber(recordPointer)
```

by referencing the static member via class not instance reference.

## How was this patch tested?

Existing tests should cover this - Jenkins tests.

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #15141 from HyukjinKwon/SPARK-17586.

(cherry picked from commit 7151011)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…s properly

## Problem

CSV in Spark 2.0.0:
-  does not read null values back correctly for certain data types such as `Boolean`, `TimestampType`, `DateType` -- this is a regression comparing to 1.6;
- does not read empty values (specified by `options.nullValue`) as `null`s for `StringType` -- this is compatible with 1.6 but leads to problems like SPARK-16903.

## What changes were proposed in this pull request?

This patch makes changes to read all empty values back as `null`s.

## How was this patch tested?

New test cases.

Author: Liwei Lin <lwlin7@gmail.com>

Closes #14118 from lw-lin/csv-cast-null.

(cherry picked from commit 1dbb725)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…an value

## What changes were proposed in this pull request?
AssertOnQuery has two apply constructor: one that accepts a closure that returns boolean, and another that accepts a closure that returns Unit. This is actually very confusing because developers could mistakenly think that AssertOnQuery always require a boolean return type and verifies the return result, when indeed the value of the last statement is ignored in one of the constructors.

This pull request makes the two constructor consistent and always require boolean value. It will overall make the test suites more robust against developer errors.

As an evidence for the confusing behavior, this change also identified a bug with an existing test case due to file system time granularity. This pull request fixes that test case as well.

## How was this patch tested?
This is a test only change.

Author: petermaxlee <petermaxlee@gmail.com>

Closes #15127 from petermaxlee/SPARK-17571.

(cherry picked from commit 8f0c35a)
Signed-off-by: Reynold Xin <rxin@databricks.com>
…ot relative to a calendar

## What changes were proposed in this pull request?

Clarify that slide and window duration are absolute, and not relative to a calendar.

## How was this patch tested?

Doc build (no functional change)

Author: Sean Owen <sowen@cloudera.com>

Closes #15142 from srowen/SPARK-17297.

(cherry picked from commit d720a40)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…astoreDataSourcesSuite

### What changes were proposed in this pull request?
This PR is to fix a test failure on the branch 2.0 builds:
https://amplab.cs.berkeley.edu/jenkins/view/Spark%20QA%20Test%20(Dashboard)/job/spark-branch-2.0-test-maven-hadoop-2.7/711/
```
Error Message

"Table `default`.`createdJsonTable` already exists.;" did not contain "Table default.createdJsonTable already exists." We should complain that createdJsonTable already exists
```

### How was this patch tested?
N/A

Author: gatorsmile <gatorsmile@gmail.com>

Closes #15145 from gatorsmile/fixTestCase.
…rent versions of jars.

## What changes were proposed in this pull request?
Docker tests are using older version  of jersey jars (1.19),  which was used in older releases of spark.  In 2.0 releases Spark was upgraded to use 2.x verison of Jersey. After  upgrade to new versions, docker tests  are  failing with AbstractMethodError.  Now that spark is upgraded  to 2.x jersey version, using of  shaded docker jars  may not be required any more.  Removed the exclusions/overrides of jersey related classes from pom file, and changed the docker-client to use regular jar instead of shaded one.

## How was this patch tested?

Tested  using existing  docker-integration-tests

Author: sureshthalamati <suresh.thalamati@gmail.com>

Closes #15114 from sureshthalamati/docker_testfix-spark-17473.

(cherry picked from commit cdea1d1)
Signed-off-by: Josh Rosen <joshrosen@databricks.com>
…n page

## What changes were proposed in this pull request?

This PR adds `Application.executorLimit` to the applicatino page

## How was this patch tested?

Checked the UI manually.

Screenshots:

1. Dynamic allocation is disabled

<img width="484" alt="screen shot 2016-09-07 at 4 21 49 pm" src="https://cloud.githubusercontent.com/assets/1000778/18332029/210056ea-7518-11e6-9f52-76d96046c1c0.png">

2. Dynamic allocation is enabled.

<img width="466" alt="screen shot 2016-09-07 at 4 25 30 pm" src="https://cloud.githubusercontent.com/assets/1000778/18332034/2c07700a-7518-11e6-8fce-aebe25014902.png">

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #15001 from zsxwing/fix-core-info.

(cherry picked from commit 80d6655)
Signed-off-by: Andrew Or <andrew@databricks.com>
## What changes were proposed in this pull request?

Currently, the SQL metrics looks like `number of rows: 111111111111`, it's very hard to read how large the number is. So a separator was added by #12425, but removed by #14142, because the separator is weird in some locales (for example, pl_PL), this PR will add that back, but always use "," as the separator, since the SQL UI are all in English.

## How was this patch tested?

Existing tests.
![metrics](https://cloud.githubusercontent.com/assets/40902/14573908/21ad2f00-030d-11e6-9e2c-c544f30039ea.png)

Author: Davies Liu <davies@databricks.com>

Closes #15106 from davies/metric_sep.

(cherry picked from commit e063206)
Signed-off-by: Davies Liu <davies.liu@gmail.com>
cloud-fan and others added 24 commits November 23, 2016 04:15
## What changes were proposed in this pull request?

In Spark SQL, some expression may output safe format values, e.g. `CreateArray`, `CreateStruct`, `Cast`, etc. When we compare 2 values, we should be able to compare safe and unsafe formats.

The `GreaterThan`, `LessThan`, etc. in Spark SQL already handles it, but the `EqualTo` doesn't. This PR fixes it.

## How was this patch tested?

new unit test and regression test

Author: Wenchen Fan <wenchen@databricks.com>

Closes #15929 from cloud-fan/type-aware.

(cherry picked from commit 84284e8)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
## What changes were proposed in this pull request?

Technically map type is not orderable, but can be used in equality comparison. However, due to the limitation of the current implementation, map type can't be used in equality comparison so that it can't be join key or grouping key.

This PR makes this limitation explicit, to avoid wrong result.

backport #15956 to 2.0

## How was this patch tested?
updated tests

Author: Wenchen Fan <wenchen@databricks.com>

Closes #15988 from cloud-fan/map-type.
## What changes were proposed in this pull request?

The expression `in(empty seq)` is invalid in some data source. Since `in(empty seq)` is always false, we should generate `in(empty seq)` to false literal in optimizer.
The sql `SELECT * FROM t WHERE a IN ()` throws a `ParseException` which is consistent with Hive, don't need to change that behavior.

## How was this patch tested?
Add new test case in `OptimizeInSuite`.

Author: jiangxingbo <jiangxb1987@gmail.com>

Closes #15977 from jiangxb1987/isin-empty.

(cherry picked from commit e2fb9fd)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
## What changes were proposed in this pull request?

Currently, `OuterReference` is not `NamedExpression`. So, it raises 'ClassCastException` when it used in projection lists of IN correlated subqueries. This PR aims to support that by making `OuterReference` as `NamedExpression` to show correct error messages.

```scala
scala> sql("CREATE TEMPORARY VIEW t1 AS SELECT * FROM VALUES 1, 2 AS t1(a)")
scala> sql("CREATE TEMPORARY VIEW t2 AS SELECT * FROM VALUES 1 AS t2(b)")
scala> sql("SELECT a FROM t1 WHERE a IN (SELECT a FROM t2)").show
java.lang.ClassCastException: org.apache.spark.sql.catalyst.expressions.OuterReference cannot be cast to org.apache.spark.sql.catalyst.expressions.NamedExpression
```

## How was this patch tested?

Pass the Jenkins test with new test cases.

Author: Dongjoon Hyun <dongjoon@apache.org>

Closes #16015 from dongjoon-hyun/SPARK-17251-2.

(cherry picked from commit 9c03c56)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
## What changes were proposed in this pull request?

This PR avoids a compilation error due to more than 64KB Java byte code size. This error occur since generated java code `SpecificSafeProjection.apply()` for nested JavaBeans is too big. This PR avoids this compilation error by splitting a big code chunk into multiple methods by calling `CodegenContext.splitExpression` at `InitializeJavaBean.doGenCode`
An object reference for JavaBean is stored to an instance variable `javaBean...`. Then, the instance variable will be referenced in the split methods.

Generated code with this PR
````
/* 22098 */   private void apply130_0(InternalRow i) {
...
/* 22125 */     boolean isNull238 = i.isNullAt(2);
/* 22126 */     InternalRow value238 = isNull238 ? null : (i.getStruct(2, 3));
/* 22127 */     boolean isNull236 = false;
/* 22128 */     test.org.apache.spark.sql.JavaDatasetSuite$Nesting1 value236 = null;
/* 22129 */     if (!false && isNull238) {
/* 22130 */
/* 22131 */       final test.org.apache.spark.sql.JavaDatasetSuite$Nesting1 value239 = null;
/* 22132 */       isNull236 = true;
/* 22133 */       value236 = value239;
/* 22134 */     } else {
/* 22135 */
/* 22136 */       final test.org.apache.spark.sql.JavaDatasetSuite$Nesting1 value241 = false ? null : new test.org.apache.spark.sql.JavaDatasetSuite$Nesting1();
/* 22137 */       this.javaBean14 = value241;
/* 22138 */       if (!false) {
/* 22139 */         apply25_0(i);
/* 22140 */         apply25_1(i);
/* 22141 */         apply25_2(i);
/* 22142 */       }
/* 22143 */       isNull236 = false;
/* 22144 */       value236 = value241;
/* 22145 */     }
/* 22146 */     this.javaBean.setField2(value236);
/* 22147 */
/* 22148 */   }
...
/* 22928 */   public java.lang.Object apply(java.lang.Object _i) {
/* 22929 */     InternalRow i = (InternalRow) _i;
/* 22930 */
/* 22931 */     final test.org.apache.spark.sql.JavaDatasetSuite$NestedComplicatedJavaBean value1 = false ? null : new test.org.apache.spark.sql.JavaDatasetSuite$NestedComplicatedJavaBean();
/* 22932 */     this.javaBean = value1;
/* 22933 */     if (!false) {
/* 22934 */       apply130_0(i);
/* 22935 */       apply130_1(i);
/* 22936 */       apply130_2(i);
/* 22937 */       apply130_3(i);
/* 22938 */       apply130_4(i);
/* 22939 */     }
/* 22940 */     if (false) {
/* 22941 */       mutableRow.setNullAt(0);
/* 22942 */     } else {
/* 22943 */
/* 22944 */       mutableRow.update(0, value1);
/* 22945 */     }
/* 22946 */
/* 22947 */     return mutableRow;
/* 22948 */   }
````

## How was this patch tested?

added a test suite into `JavaDatasetSuite.java`

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #16032 from kiszk/SPARK-18118.

(cherry picked from commit f075cd9)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
Remove this reference.

(cherry picked from commit 70dfdcb)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…of a Left Anti join [BRANCH-2.0]

## What changes were proposed in this pull request?
We currently push down join conditions of a Left Anti join to both sides of the join. This is similar to Inner, Left Semi and Existence (a specialized left semi) join. The problem is that this changes the semantics of the join; a left anti join filters out rows that matches the join condition.

This PR fixes this by only pushing down conditions to the right hand side of the join. This is similar to the behavior of left outer join.

This PR is a backport of #16026

## How was this patch tested?
Added tests to `FilterPushdownSuite.scala` and created a SQLQueryTestSuite file for left anti joins with a regression test.

Author: Herman van Hovell <hvanhovell@databricks.com>

Closes #16039 from hvanhovell/SPARK-18597-branch-2.0.
…executor loss

## What changes were proposed in this pull request?

This patch fixes a critical resource leak in the TaskScheduler which could cause RDDs and ShuffleDependencies to be kept alive indefinitely if an executor with running tasks is permanently lost and the associated stage fails.

This problem was originally identified by analyzing the heap dump of a driver belonging to a cluster that had run out of shuffle space. This dump contained several `ShuffleDependency` instances that were retained by `TaskSetManager`s inside the scheduler but were not otherwise referenced. Each of these `TaskSetManager`s was considered a "zombie" but had no running tasks and therefore should have been cleaned up. However, these zombie task sets were still referenced by the `TaskSchedulerImpl.taskIdToTaskSetManager` map.

Entries are added to the `taskIdToTaskSetManager` map when tasks are launched and are removed inside of `TaskScheduler.statusUpdate()`, which is invoked by the scheduler backend while processing `StatusUpdate` messages from executors. The problem with this design is that a completely dead executor will never send a `StatusUpdate`. There is [some code](https://github.com/apache/spark/blob/072f4c518cdc57d705beec6bcc3113d9a6740819/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala#L338) in `statusUpdate` which handles tasks that exit with the `TaskState.LOST` state (which is supposed to correspond to a task failure triggered by total executor loss), but this state only seems to be used in Mesos fine-grained mode. There doesn't seem to be any code which performs per-task state cleanup for tasks that were running on an executor that completely disappears without sending any sort of final death message. The `executorLost` and [`removeExecutor`](https://github.com/apache/spark/blob/072f4c518cdc57d705beec6bcc3113d9a6740819/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala#L527) methods don't appear to perform any cleanup of the `taskId -> *` mappings, causing the leaks observed here.

This patch's fix is to maintain a `executorId -> running task id` mapping so that these `taskId -> *` maps can be properly cleaned up following an executor loss.

There are some potential corner-case interactions that I'm concerned about here, especially some details in [the comment](https://github.com/apache/spark/blob/072f4c518cdc57d705beec6bcc3113d9a6740819/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala#L523) in `removeExecutor`, so I'd appreciate a very careful review of these changes.

This PR is opened against branch-2.0, where I first observed this problem, but will also need to be fixed in master, branch-2.1, and branch-1.6 (which I'll do in followup PRs after this fix is reviewed and merged).

## How was this patch tested?

I added a new unit test to `TaskSchedulerImplSuite`. You can check out this PR as of 25e455e to see the failing test.

cc kayousterhout, markhamstra, rxin for review.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #15986 from JoshRosen/fix-leak-following-total-executor-loss.
…FORMATTED/EXTENDED a PERSISTENT/TEMP Table for JDBC

### What changes were proposed in this pull request?

This PR is to backport #15358 to Spark 2.0.

------

We should never expose the Credentials in the EXPLAIN and DESC FORMATTED/EXTENDED command. However, below commands exposed the credentials.

In the related PR: #10452

> URL patterns to specify credential seems to be vary between different databases.

Thus, we hide the whole `url` value if it contains the keyword `password`. We also hide the `password` property.

Before the fix, the command outputs look like:

``` SQL
CREATE TABLE tab1
USING org.apache.spark.sql.jdbc
OPTIONS (
 url 'jdbc:h2:mem:testdb0;user=testUser;password=testPass',
 dbtable 'TEST.PEOPLE',
 user 'testUser',
 password '$password')

DESC FORMATTED tab1
DESC EXTENDED tab1
```

Before the fix,
- The output of SQL statement EXPLAIN
```
== Physical Plan ==
ExecutedCommand
   +- CreateDataSourceTableCommand CatalogTable(
	Table: `tab1`
	Created: Wed Nov 16 23:00:10 PST 2016
	Last Access: Wed Dec 31 15:59:59 PST 1969
	Type: MANAGED
	Provider: org.apache.spark.sql.jdbc
	Storage(Properties: [url=jdbc:h2:mem:testdb0;user=testUser;password=testPass, dbtable=TEST.PEOPLE, user=testUser, password=testPass])), false
```

- The output of `DESC FORMATTED`
```
...
|Storage Desc Parameters:    |                                                                  |       |
|  url                       |jdbc:h2:mem:testdb0;user=testUser;password=testPass               |       |
|  dbtable                   |TEST.PEOPLE                                                       |       |
|  user                      |testUser                                                          |       |
|  password                  |testPass                                                          |       |
+----------------------------+------------------------------------------------------------------+-------+
```

- The output of `DESC EXTENDED`
```
|# Detailed Table Information|CatalogTable(
	Table: `default`.`tab1`
	Created: Wed Nov 16 23:00:10 PST 2016
	Last Access: Wed Dec 31 15:59:59 PST 1969
	Type: MANAGED
	Schema: [StructField(NAME,StringType,false), StructField(THEID,IntegerType,false)]
	Provider: org.apache.spark.sql.jdbc
	Storage(Location: file:/Users/xiaoli/IdeaProjects/sparkDelivery/spark-warehouse/tab1, Properties: [url=jdbc:h2:mem:testdb0;user=testUser;password=testPass, dbtable=TEST.PEOPLE, user=testUser, password=testPass]))|       |
```

After the fix,
- The output of SQL statement EXPLAIN
```
== Physical Plan ==
ExecutedCommand
   +- CreateDataSourceTableCommand CatalogTable(
	Table: `tab1`
	Created: Wed Nov 16 22:43:49 PST 2016
	Last Access: Wed Dec 31 15:59:59 PST 1969
	Type: MANAGED
	Provider: org.apache.spark.sql.jdbc
	Storage(Properties: [url=###, dbtable=TEST.PEOPLE, user=testUser, password=###])), false
```
- The output of `DESC FORMATTED`
```
...
|Storage Desc Parameters:    |                                                                  |       |
|  url                       |###                                                               |       |
|  dbtable                   |TEST.PEOPLE                                                       |       |
|  user                      |testUser                                                          |       |
|  password                  |###                                                               |       |
+----------------------------+------------------------------------------------------------------+-------+
```

- The output of `DESC EXTENDED`
```
|# Detailed Table Information|CatalogTable(
	Table: `default`.`tab1`
	Created: Wed Nov 16 22:43:49 PST 2016
	Last Access: Wed Dec 31 15:59:59 PST 1969
	Type: MANAGED
	Schema: [StructField(NAME,StringType,false), StructField(THEID,IntegerType,false)]
	Provider: org.apache.spark.sql.jdbc
	Storage(Location: file:/Users/xiaoli/IdeaProjects/sparkDelivery/spark-warehouse/tab1, Properties: [url=###, dbtable=TEST.PEOPLE, user=testUser, password=###]))|       |
```

### How was this patch tested?

Added test cases

Author: gatorsmile <gatorsmile@gmail.com>

Closes #16047 from gatorsmile/backPortSPARK-17783.
## What changes were proposed in this pull request?

Backport PR #15410 to branch-2.0

## How was this patch tested?

Existing unit tests. Screenshots for UI changes provided in PR #15410.

Author: Vinayak <vijoshi5@in.ibm.com>

Closes #15991 from vijoshi/SAAS-608.
…utors

## What changes were proposed in this pull request?

The method `TaskSchedulerImpl.runningTasksByExecutors()` accesses the mutable `executorIdToRunningTaskIds` map without proper synchronization. In addition, as markhamstra pointed out in #15986, the signature's use of parentheses is a little odd given that this is a pure getter method.

This patch fixes both issues.

## How was this patch tested?

Covered by existing tests.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #16073 from JoshRosen/runningTasksByExecutors-thread-safety.

(cherry picked from commit c51c772)
Signed-off-by: Andrew Or <andrewor14@gmail.com>
## What changes were proposed in this pull request?

Added missing semicolon in quick-start-guide java example code which wasn't compiling before.

## How was this patch tested?
Locally by running and generating site for docs. You can see the last line contains ";" in the below snapshot.
![image](https://cloud.githubusercontent.com/assets/10628224/20751760/9a7e0402-b723-11e6-9aa8-3b6ca2d92ebf.png)

Author: manishAtGit <manish@knoldus.com>

Closes #16081 from manishatGit/fixed-quick-start-guide.
…e for Spark Streaming

## What changes were proposed in this pull request?

This is a follow-up PR to backport #16052 to branch-2.0 with incremental update in #16091

## How was this patch tested?

new unit test

cc zsxwing rxin

Author: uncleGen <hustyugm@gmail.com>

Closes #16096 from uncleGen/branch-2.0-SPARK-18617.
## What changes were proposed in this pull request?

The current error message of USING join is quite confusing, for example:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]

scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]

scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: using columns ['c1] can not be resolved given input columns: [c1, c2] ;;
'Join UsingJoin(Inner,List('c1))
:- Project [value#1 AS c1#3]
:  +- LocalRelation [value#1]
+- Project [value#7 AS c2#9]
   +- LocalRelation [value#7]
```

after this PR, it becomes:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]

scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]

scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: USING column `c1` can not be resolved with the right join side, the right output is: [c2];
```

## How was this patch tested?

updated tests

Author: Wenchen Fan <wenchen@databricks.com>

Closes #16100 from cloud-fan/natural.

(cherry picked from commit e653484)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
## What changes were proposed in this pull request?
In`JavaWrapper `'s destructor make Java Gateway dereference object in destructor, using `SparkContext._active_spark_context._gateway.detach`
Fixing the copying parameter bug, by moving the `copy` method from `JavaModel` to `JavaParams`

## How was this patch tested?
```scala
import random, string
from pyspark.ml.feature import StringIndexer

l = [(''.join(random.choice(string.ascii_uppercase) for _ in range(10)), ) for _ in range(int(7e5))]  # 700000 random strings of 10 characters
df = spark.createDataFrame(l, ['string'])

for i in range(50):
    indexer = StringIndexer(inputCol='string', outputCol='index')
    indexer.fit(df)
```
* Before: would keep StringIndexer strong reference, causing GC issues and is halted midway
After: garbage collection works as the object is dereferenced, and computation completes
* Mem footprint tested using profiler
* Added a parameter copy related test which was failing before.

Author: Sandeep Singh <sandeep@techaddict.me>
Author: jkbradley <joseph.kurata.bradley@gmail.com>

Closes #15843 from techaddict/SPARK-18274.

(cherry picked from commit 78bb7f8)
Signed-off-by: Joseph K. Bradley <joseph@databricks.com>
…te. Receiver data should be deserialized properly

## What changes were proposed in this pull request?

Avoid to create multiple threads to stop StreamingContext. Otherwise, the latch added in #16091 can be passed too early.

## How was this patch tested?

Jenkins

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #16105 from zsxwing/SPARK-18617-2.

(cherry picked from commit 086b0c8)
Signed-off-by: Shixiong Zhu <shixiong@databricks.com>
## What changes were proposed in this pull request?

This fixes the parser rule to match named expressions, which doesn't work for two reasons:
1. The name match is not coerced to a regular expression (missing .r)
2. The surrounding literals are incorrect and attempt to escape a single quote, which is unnecessary

## How was this patch tested?

This adds test cases for named expressions using the bracket syntax, including one with quoted spaces.

Author: Ryan Blue <blue@apache.org>

Closes #16107 from rdblue/SPARK-18677-fix-json-path.

(cherry picked from commit 4877897)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…ests at ExecutorClassLoaderSuite

## What changes were proposed in this pull request?

This PR fixes two problems as below:

- Close `BufferedSource` after `Source.fromInputStream(...)` to release resource and make the tests pass on Windows in `ExecutorClassLoaderSuite`

  ```
  [info] Exception encountered when attempting to run a suite with class name: org.apache.spark.repl.ExecutorClassLoaderSuite *** ABORTED *** (7 seconds, 333 milliseconds)
  [info]   java.io.IOException: Failed to delete: C:\projects\spark\target\tmp\spark-77b2f37b-6405-47c4-af1c-4a6a206511f2
  [info]   at org.apache.spark.util.Utils$.deleteRecursively(Utils.scala:1010)
  [info]   at org.apache.spark.repl.ExecutorClassLoaderSuite.afterAll(ExecutorClassLoaderSuite.scala:76)
  [info]   at org.scalatest.BeforeAndAfterAll$class.afterAll(BeforeAndAfterAll.scala:213)
  ...
  ```

- Fix URI correctly so that related tests can be passed on Windows.

  ```
  [info] - child first *** FAILED *** (78 milliseconds)
  [info]   java.net.URISyntaxException: Illegal character in authority at index 7: file://C:\projects\spark\target\tmp\spark-00b66070-0548-463c-b6f3-8965d173da9b
  [info]   at java.net.URI$Parser.fail(URI.java:2848)
  [info]   at java.net.URI$Parser.parseAuthority(URI.java:3186)
  ...
  [info] - parent first *** FAILED *** (15 milliseconds)
  [info]   java.net.URISyntaxException: Illegal character in authority at index 7: file://C:\projects\spark\target\tmp\spark-00b66070-0548-463c-b6f3-8965d173da9b
  [info]   at java.net.URI$Parser.fail(URI.java:2848)
  [info]   at java.net.URI$Parser.parseAuthority(URI.java:3186)
  ...
  [info] - child first can fall back *** FAILED *** (0 milliseconds)
  [info]   java.net.URISyntaxException: Illegal character in authority at index 7: file://C:\projects\spark\target\tmp\spark-00b66070-0548-463c-b6f3-8965d173da9b
  [info]   at java.net.URI$Parser.fail(URI.java:2848)
  [info]   at java.net.URI$Parser.parseAuthority(URI.java:3186)
  ...
  [info] - child first can fail *** FAILED *** (0 milliseconds)
  [info]   java.net.URISyntaxException: Illegal character in authority at index 7: file://C:\projects\spark\target\tmp\spark-00b66070-0548-463c-b6f3-8965d173da9b
  [info]   at java.net.URI$Parser.fail(URI.java:2848)
  [info]   at java.net.URI$Parser.parseAuthority(URI.java:3186)
  ...
  [info] - resource from parent *** FAILED *** (0 milliseconds)
  [info]   java.net.URISyntaxException: Illegal character in authority at index 7: file://C:\projects\spark\target\tmp\spark-00b66070-0548-463c-b6f3-8965d173da9b
  [info]   at java.net.URI$Parser.fail(URI.java:2848)
  [info]   at java.net.URI$Parser.parseAuthority(URI.java:3186)
  ...
  [info] - resources from parent *** FAILED *** (0 milliseconds)
  [info]   java.net.URISyntaxException: Illegal character in authority at index 7: file://C:\projects\spark\target\tmp\spark-00b66070-0548-463c-b6f3-8965d173da9b
  [info]   at java.net.URI$Parser.fail(URI.java:2848)
  [info]   at java.net.URI$Parser.parseAuthority(URI.java:3186)
  ```

## How was this patch tested?

Manually tested via AppVeyor.

**Before**
https://ci.appveyor.com/project/spark-test/spark/build/102-rpel-ExecutorClassLoaderSuite

**After**
https://ci.appveyor.com/project/spark-test/spark/build/108-rpel-ExecutorClassLoaderSuite

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #16116 from HyukjinKwon/close-after-open.

(cherry picked from commit d1312fb)
Signed-off-by: Sean Owen <sowen@cloudera.com>
…Projection code to exceed JVM code size limit

## What changes were proposed in this pull request?

Fix for SPARK-18091 which is a bug related to large if expressions causing generated SpecificUnsafeProjection code to exceed JVM code size limit.

This PR changes if expression's code generation to place its predicate, true value and false value expressions' generated code in separate methods in context so as to never generate too long combined code.
## How was this patch tested?

Added a unit test and also tested manually with the application (having transformations similar to the unit test) which caused the issue to be identified in the first place.

Author: Kapil Singh <kapsingh@adobe.com>

Closes #15620 from kapilsingh5050/SPARK-18091-IfCodegenFix.

(cherry picked from commit e463678)
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…ploding Python UDFs

## What changes were proposed in this pull request?

As reported in the Jira, there are some weird issues with exploding Python UDFs in SparkSQL.

The following test code can reproduce it. Notice: the following test code is reported to return wrong results in the Jira. However, as I tested on master branch, it causes exception and so can't return any result.

    >>> from pyspark.sql.functions import *
    >>> from pyspark.sql.types import *
    >>>
    >>> df = spark.range(10)
    >>>
    >>> def return_range(value):
    ...   return [(i, str(i)) for i in range(value - 1, value + 1)]
    ...
    >>> range_udf = udf(return_range, ArrayType(StructType([StructField("integer_val", IntegerType()),
    ...                                                     StructField("string_val", StringType())])))
    >>>
    >>> df.select("id", explode(range_udf(df.id))).show()
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/spark/python/pyspark/sql/dataframe.py", line 318, in show
        print(self._jdf.showString(n, 20))
      File "/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
      File "/spark/python/pyspark/sql/utils.py", line 63, in deco
        return f(*a, **kw)
      File "/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py", line 319, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling o126.showString.: java.lang.AssertionError: assertion failed
        at scala.Predef$.assert(Predef.scala:156)
        at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:120)
        at org.apache.spark.sql.execution.GenerateExec.consume(GenerateExec.scala:57)

The cause of this issue is, in `ExtractPythonUDFs` we insert `BatchEvalPythonExec` to run PythonUDFs in batch. `BatchEvalPythonExec` will add extra outputs (e.g., `pythonUDF0`) to original plan. In above case, the original `Range` only has one output `id`. After `ExtractPythonUDFs`, the added `BatchEvalPythonExec` has two outputs `id` and `pythonUDF0`.

Because the output of `GenerateExec` is given after analysis phase, in above case, it is the combination of `id`, i.e., the output of `Range`, and `col`. But in planning phase, we change `GenerateExec`'s child plan to `BatchEvalPythonExec` with additional output attributes.

It will cause no problem in non wholestage codegen. Because when evaluating the additional attributes are projected out the final output of `GenerateExec`.

However, as `GenerateExec` now supports wholestage codegen, the framework will input all the outputs of the child plan to `GenerateExec`. Then when consuming `GenerateExec`'s output data (i.e., calling `consume`), the number of output attributes is different to the output variables in wholestage codegen.

To solve this issue, this patch only gives the generator's output to `GenerateExec` after analysis phase. `GenerateExec`'s output is the combination of its child plan's output and the generator's output. So when we change `GenerateExec`'s child, its output is still correct.

## How was this patch tested?

Added test cases to PySpark.

Please review http://spark.apache.org/contributing.html before opening a pull request.

Author: Liang-Chi Hsieh <viirya@gmail.com>

Closes #16120 from viirya/fix-py-udf-with-generator.

(cherry picked from commit 3ba69b6)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
## What changes were proposed in this pull request?
I jumped the gun on merging #16120, and missed a tiny potential problem. This PR fixes that by changing a val into a def; this should prevent potential serialization/initialization weirdness from happening.

## How was this patch tested?
Existing tests.

Author: Herman van Hovell <hvanhovell@databricks.com>

Closes #16170 from hvanhovell/SPARK-18634.

(cherry picked from commit 381ef4e)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…esToBytesMap

## What changes were proposed in this pull request?

BytesToBytesMap currently does not release the in-memory storage (the longArray variable) after it spills to disk. This is typically not a problem during aggregation because the longArray should be much smaller than the pages, and because we grow the longArray at a conservative rate.

However this can lead to an OOM when an already running task is allocated more than its fair share, this can happen because of a scheduling delay. In this case the longArray can grow beyond the fair share of memory for the task. This becomes problematic when the task spills and the long array is not freed, that causes subsequent memory allocation requests to be denied by the memory manager resulting in an OOM.

This PR fixes this issuing by freeing the longArray when the BytesToBytesMap spills.

## How was this patch tested?

Existing tests and tested on realworld workloads.

Author: Jie Xiong <jiexiong@fb.com>
Author: jiexiong <jiexiong@gmail.com>

Closes #15722 from jiexiong/jie_oom_fix.

(cherry picked from commit c496d03)
Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…hen groupBy column is not attribute

## What changes were proposed in this pull request?

Backport of #16177 to branch-2.0

## How was this patch tested?

existing and additional unit tests

Author: Andrew Ray <ray.andrew@gmail.com>

Closes #16197 from aray/SPARK-17760-2.0.
## What changes were proposed in this pull request?

When SSL is enabled, the Spark shell shows:
```
Spark context Web UI available at https://192.168.99.1:4040
```
This is wrong because 4040 is http, not https. It redirects to the https port.
More importantly, this introduces several broken links in the UI. For example, in the master UI, the worker link is https:8081 instead of http:8081 or https:8481.

CC: mengxr liancheng

I manually tested accessing by accessing MasterPage, WorkerPage and HistoryServer with SSL enabled.

Author: sarutak <sarutak@oss.nttdata.co.jp>

Closes #16190 from sarutak/SPARK-18761.

(cherry picked from commit bb94f61)
Signed-off-by: Marcelo Vanzin <vanzin@cloudera.com>
@AmplabJenkins
Copy link

Can one of the admins verify this patch?

@srowen
Copy link
Member

srowen commented Dec 8, 2016

@ming616 please close this

@asfgit asfgit closed this in 330fda8 Dec 8, 2016
zifeif2 pushed a commit to zifeif2/spark that referenced this pull request Nov 22, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.