Skip to content

Conversation

@skanjila
Copy link

What changes were proposed in this pull request?

Changed a set of test files in core directory to use local[4](Please fill in changes proposed in this fix)

How was this patch tested?

Ran unit tests in core, all passed
(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)
(If this patch involves UI changes, please attach a screenshot; otherwise, remove this)

Please review https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark before opening a pull request.

@srowen
Copy link
Member

srowen commented Oct 30, 2016

There are a lot more places that would need to change, yes.

@srowen
Copy link
Member

srowen commented Oct 30, 2016

Jenkins test this please

## What changes were proposed in this pull request?

To reduce the number of components in SQL named *Catalog, rename *FileCatalog to *FileIndex. A FileIndex is responsible for returning the list of partitions / files to scan given a filtering expression.

```
TableFileCatalog => CatalogFileIndex
FileCatalog => FileIndex
ListingFileCatalog => InMemoryFileIndex
MetadataLogFileCatalog => MetadataLogFileIndex
PrunedTableFileCatalog => PrunedInMemoryFileIndex
```

cc yhuai marmbrus

## How was this patch tested?

N/A

Author: Eric Liang <ekl@databricks.com>
Author: Eric Liang <ekhliang@gmail.com>

Closes #15634 from ericl/rename-file-provider.
@SparkQA
Copy link

SparkQA commented Oct 30, 2016

Test build #67789 has finished for PR 15689 at commit c47d079.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@SparkQA
Copy link

SparkQA commented Oct 30, 2016

Test build #67790 has finished for PR 15689 at commit c47d079.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@skanjila skanjila changed the title initial set of changes for local[4] in core [SPARK-9487] [TESTS] [WIP]Remove local[2] and replace with local[4] for all unit tests Oct 30, 2016
@skanjila skanjila changed the title [SPARK-9487] [TESTS] [WIP]Remove local[2] and replace with local[4] for all unit tests [SPARK-9487] [TESTS] [WIP]Use the same num. worker threads in Scala/Python unit tests Oct 30, 2016
Saikat Kanjilal and others added 5 commits October 30, 2016 15:06
…valid option

## What changes were proposed in this pull request?

Currently, `ANALYZE TABLE` command accepts `identifier` for option `NOSCAN`. This PR raises a ParseException for unknown option.

**Before**
```scala
scala> sql("create table test(a int)")
res0: org.apache.spark.sql.DataFrame = []

scala> sql("analyze table test compute statistics blah")
res1: org.apache.spark.sql.DataFrame = []
```

**After**
```scala
scala> sql("create table test(a int)")
res0: org.apache.spark.sql.DataFrame = []

scala> sql("analyze table test compute statistics blah")
org.apache.spark.sql.catalyst.parser.ParseException:
Expected `NOSCAN` instead of `blah`(line 1, pos 0)
```

## How was this patch tested?

Pass the Jenkins test with a new test case.

Author: Dongjoon Hyun <dongjoon@apache.org>

Closes #15640 from dongjoon-hyun/SPARK-18106.
## What changes were proposed in this pull request?

This patch makes RBackend connection timeout configurable by user.

## How was this patch tested?
N/A

Author: Hossein <hossein@databricks.com>

Closes #15471 from falaki/SPARK-17919.
## What changes were proposed in this pull request?

Random Forest Regression and Classification for R
Clean-up/reordering generics.R

## How was this patch tested?

manual tests, unit tests

Author: Felix Cheung <felixcheung_m@hotmail.com>

Closes #15607 from felixcheung/rrandomforest.
…orest regression and classification

## What changes were proposed in this pull request?

Add subsmaplingRate to randomForestClassifier
Add varianceCol to randomForestRegressor
In Python

## How was this patch tested?

manual tests

Author: Felix Cheung <felixcheung_m@hotmail.com>

Closes #15638 from felixcheung/pyrandomforest.
@HyukjinKwon
Copy link
Member

(Yes, I guess we should fix many tests too. As far as I remember, many tests are dependent on the default partition number if I remember correctly.)

@skanjila
Copy link
Author

One step at a time, first lets get the unit tests all working with local[4] in python and scala, I just added a bunch of new commits in unit tests in ml package, once I get the green light I will add python and other tests.


From: Hyukjin Kwon notifications@github.com
Sent: Sunday, October 30, 2016 5:45 PM
To: apache/spark
Cc: skanjila; Author
Subject: Re: [apache/spark] [SPARK-9487] [TESTS] [WIP]Use the same num. worker threads in Scala/Python unit tests (#15689)

(Yes, I guess we should fix many tests too. As far as I remember, many tests are dependent on the default partition number if I remember correctly.)

You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHubhttps://github.com//pull/15689#issuecomment-257192746, or mute the threadhttps://github.com/notifications/unsubscribe-auth/AApKRlyYFhrfZHhbHAvG1_6RygPcSs3sks5q5ToqgaJpZM4KkdM-.

zsxwing and others added 15 commits October 31, 2016 00:11
…eaking history server

## What changes were proposed in this pull request?

Because of the refactoring work in Structured Streaming, the event logs generated by Strucutred Streaming in Spark 2.0.0 and 2.0.1 cannot be parsed.

This PR just ignores these logs in ReplayListenerBus because no places use them.
## How was this patch tested?
- Generated events logs using Spark 2.0.0 and 2.0.1, and saved them as `structured-streaming-query-event-logs-2.0.0.txt` and `structured-streaming-query-event-logs-2.0.1.txt`
- The new added test makes sure ReplayListenerBus will skip these bad jsons.

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #15663 from zsxwing/fix-event-log.
Closes #11610
Closes #15411
Closes #15501
Closes #12613
Closes #12518
Closes #12026
Closes #15524
Closes #12693
Closes #12358
Closes #15588
Closes #15635
Closes #15678
Closes #14699
Closes #9008

Author: Sean Owen <sowen@cloudera.com>

Closes #15685 from srowen/CloseStalePRs.
…lans

## What changes were proposed in this pull request?
### Problem

Iterative ML code may easily create query plans that grow exponentially. We found that query planning time also increases exponentially even when all the sub-plan trees are cached.

The following snippet illustrates the problem:

``` scala
(0 until 6).foldLeft(Seq(1, 2, 3).toDS) { (plan, iteration) =>
  println(s"== Iteration $iteration ==")
  val time0 = System.currentTimeMillis()
  val joined = plan.join(plan, "value").join(plan, "value").join(plan, "value").join(plan, "value")
  joined.cache()
  println(s"Query planning takes ${System.currentTimeMillis() - time0} ms")
  joined.as[Int]
}

// == Iteration 0 ==
// Query planning takes 9 ms
// == Iteration 1 ==
// Query planning takes 26 ms
// == Iteration 2 ==
// Query planning takes 53 ms
// == Iteration 3 ==
// Query planning takes 163 ms
// == Iteration 4 ==
// Query planning takes 700 ms
// == Iteration 5 ==
// Query planning takes 3418 ms
```

This is because when building a new Dataset, the new plan is always built upon `QueryExecution.analyzed`, which doesn't leverage existing cached plans.

On the other hand, usually, doing caching every a few iterations may not be the right direction for this problem since caching is too memory consuming (imaging computing connected components over a graph with 50 billion nodes). What we really need here is to truncate both the query plan (to minimize query planning time) and the lineage of the underlying RDD (to avoid stack overflow).
### Changes introduced in this PR

This PR tries to fix this issue by introducing a `checkpoint()` method into `Dataset[T]`, which does exactly the things described above. The following snippet, which is essentially the same as the one above but invokes `checkpoint()` instead of `cache()`, shows the micro benchmark result of this PR:

One key point is that the checkpointed Dataset should preserve the origianl partitioning and ordering information of the original Dataset, so that we can avoid unnecessary shuffling (similar to reading from a pre-bucketed table). This is done by adding `outputPartitioning` and `outputOrdering` to `LogicalRDD` and `RDDScanExec`.
### Micro benchmark

``` scala
spark.sparkContext.setCheckpointDir("/tmp/cp")

(0 until 100).foldLeft(Seq(1, 2, 3).toDS) { (plan, iteration) =>
  println(s"== Iteration $iteration ==")
  val time0 = System.currentTimeMillis()
  val cp = plan.checkpoint()
  cp.count()
  System.out.println(s"Checkpointing takes ${System.currentTimeMillis() - time0} ms")

  val time1 = System.currentTimeMillis()
  val joined = cp.join(cp, "value").join(cp, "value").join(cp, "value").join(cp, "value")
  val result = joined.as[Int]

  println(s"Query planning takes ${System.currentTimeMillis() - time1} ms")
  result
}

// == Iteration 0 ==
// Checkpointing takes 591 ms
// Query planning takes 13 ms
// == Iteration 1 ==
// Checkpointing takes 1605 ms
// Query planning takes 16 ms
// == Iteration 2 ==
// Checkpointing takes 782 ms
// Query planning takes 8 ms
// == Iteration 3 ==
// Checkpointing takes 729 ms
// Query planning takes 10 ms
// == Iteration 4 ==
// Checkpointing takes 734 ms
// Query planning takes 9 ms
// == Iteration 5 ==
// ...
// == Iteration 50 ==
// Checkpointing takes 571 ms
// Query planning takes 7 ms
// == Iteration 51 ==
// Checkpointing takes 548 ms
// Query planning takes 7 ms
// == Iteration 52 ==
// Checkpointing takes 596 ms
// Query planning takes 8 ms
// == Iteration 53 ==
// Checkpointing takes 568 ms
// Query planning takes 7 ms
// ...
```

You may see that although checkpointing is more heavy weight an operation, it always takes roughly the same amount of time to perform both checkpointing and query planning.
### Open question

mengxr mentioned that it would be more convenient if we can make `Dataset.checkpoint()` eager, i.e., always performs a `RDD.count()` after calling `RDD.checkpoint()`. Not quite sure whether this is a universal requirement. Maybe we can add a `eager: Boolean` argument for `Dataset.checkpoint()` to support that.
## How was this patch tested?

Unit test added in `DatasetSuite`.

Author: Cheng Lian <lian@databricks.com>
Author: Yin Huai <yhuai@databricks.com>

Closes #15651 from liancheng/ds-checkpoint.
…the files

## What changes were proposed in this pull request?

The test `when schema inference is turned on, should read partition data` should not delete files because the source maybe is listing files. This PR just removes the delete actions since they are not necessary.

## How was this patch tested?

Jenkins

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #15699 from zsxwing/SPARK-18030.
…t flakes

## What changes were proposed in this pull request?

One possibility for this test flaking is that we have corrupted the partition schema somehow in the tests, which causes the cast to decimal to fail in the call. This should at least show us the actual partition values.

## How was this patch tested?

Run it locally, it prints out something like `ArrayBuffer(test(partcol=0), test(partcol=1), test(partcol=2), test(partcol=3), test(partcol=4))`.

Author: Eric Liang <ekl@databricks.com>

Closes #15701 from ericl/print-more-info.
## What changes were proposed in this pull request?

When inserting into datasource tables with partitions managed by the hive metastore, we need to notify the metastore of newly added partitions. Previously this was implemented via `msck repair table`, but this is more expensive than needed.

This optimizes the insertion path to add only the updated partitions.
## How was this patch tested?

Existing tests (I verified manually that tests fail if the repair operation is omitted).

Author: Eric Liang <ekl@databricks.com>

Closes #15633 from ericl/spark-18087.
## What changes were proposed in this pull request?

This will re-run the flaky test a few times after it fails. This will help determine if it's due to nondeterministic test setup, or because of some environment issue (e.g. leaked config from another test).

cc yhuai

Author: Eric Liang <ekl@databricks.com>

Closes #15708 from ericl/spark-18167-3.
## What changes were proposed in this pull request?
This patch introduces an internal commit protocol API that is used by the batch data source to do write commits. It currently has only one implementation that uses Hadoop MapReduce's OutputCommitter API. In the future, this commit API can be used to unify streaming and batch commits.

## How was this patch tested?
Should be covered by existing write tests.

Author: Reynold Xin <rxin@databricks.com>
Author: Eric Liang <ekl@databricks.com>

Closes #15707 from rxin/SPARK-18024-2.
…rk-sql than it does in hive-client

## What changes were proposed in this pull request?

As reported on the jira, insert overwrite statement runs much slower in Spark, compared with hive-client.

It seems there is a patch [HIVE-11940](apache/hive@ba21806) which largely improves insert overwrite performance on Hive. HIVE-11940 is patched after Hive 2.0.0.

Because Spark SQL uses older Hive library, we can not benefit from such improvement.

The reporter verified that there is also a big performance gap between Hive 1.2.1 (520.037 secs) and Hive 2.0.1 (35.975 secs) on insert overwrite execution.

Instead of upgrading to Hive 2.0 in Spark SQL, which might not be a trivial task, this patch provides an approach to delete the partition before asking Hive to load data files into the partition.

Note: The case reported on the jira is insert overwrite to partition. Since `Hive.loadTable` also uses the function to replace files, insert overwrite to table should has the same issue. We can take the same approach to delete the table first. I will upgrade this to include this.
## How was this patch tested?

Jenkins tests.

There are existing tests using insert overwrite statement. Those tests should be passed. I added a new test to specially test insert overwrite into partition.

For performance issue, as I don't have Hive 2.0 environment, this needs the reporter to verify it. Please refer to the jira.

Please review https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark before opening a pull request.

Author: Liang-Chi Hsieh <viirya@gmail.com>

Closes #15667 from viirya/improve-hive-insertoverwrite.
## What changes were proposed in this pull request?

This PR merges multiple lines enumerating items in order to remove the redundant spaces following slashes in [Structured Streaming Programming Guide in 2.0.2-rc1](http://people.apache.org/~pwendell/spark-releases/spark-2.0.2-rc1-docs/structured-streaming-programming-guide.html).
- Before: `Scala/ Java/ Python`
- After: `Scala/Java/Python`
## How was this patch tested?

Manual by the followings because this is documentation update.

```
cd docs
SKIP_API=1 jekyll build
```

Author: Dongjoon Hyun <dongjoon@apache.org>

Closes #15686 from dongjoon-hyun/minor_doc_space.
…ecords have the minimum value

## What changes were proposed in this pull request?

When multiple records have the minimum value, the answer of ApproximatePercentile is wrong.
## How was this patch tested?

add a test case

Author: wangzhenhua <wangzhenhua@huawei.com>

Closes #15641 from wzhfy/percentile.
…tor backend

Mesos 0.23.0 introduces a Fetch Cache feature http://mesos.apache.org/documentation/latest/fetcher/ which allows caching of resources specified in command URIs.

This patch:
- Updates the Mesos shaded protobuf dependency to 0.23.0
- Allows setting `spark.mesos.fetcherCache.enable` to enable the fetch cache for all specified URIs. (URIs must be specified for the setting to have any affect)
- Updates documentation for Mesos configuration with the new setting.

This patch does NOT:
- Allow for per-URI caching configuration. The cache setting is global to ALL URIs for the command.

Author: Charles Allen <charles@allen-net.com>

Closes #13713 from drcrallen/SPARK15994.
## What changes were proposed in this pull request?

Migrate Mesos configs to use ConfigEntry
## How was this patch tested?

Jenkins Tests

Author: Sandeep Singh <sandeep@techaddict.me>

Closes #15654 from techaddict/SPARK-16881.
…ion error

## What changes were proposed in this pull request?

Enclose --conf option value with "" to support multi value configs like spark.driver.extraJavaOptions, without "", driver will fail to start.
## How was this patch tested?

Jenkins Tests.

Test in our production environment, also unit tests, It is a very small change.

Author: Wang Lei <lei.wang@kongming-inc.com>

Closes #15643 from LeightonWong/messos-cluster.
## What changes were proposed in this pull request?

Currently an unqualified `getFunction(..)`call returns a wrong result; the returned function is shown as temporary function without a database. For example:

```
scala> sql("create function fn1 as 'org.apache.hadoop.hive.ql.udf.generic.GenericUDFAbs'")
res0: org.apache.spark.sql.DataFrame = []

scala> spark.catalog.getFunction("fn1")
res1: org.apache.spark.sql.catalog.Function = Function[name='fn1', className='org.apache.hadoop.hive.ql.udf.generic.GenericUDFAbs', isTemporary='true']
```

This PR fixes this by adding database information to ExpressionInfo (which is used to store the function information).
## How was this patch tested?

Added more thorough tests to `CatalogSuite`.

Author: Herman van Hovell <hvanhovell@databricks.com>

Closes #15542 from hvanhovell/SPARK-17996.
jiangxb1987 and others added 17 commits November 8, 2016 09:41
## What changes were proposed in this pull request?

This PR port RDD API to use commit protocol, the changes made here:
1. Add new internal helper class that saves an RDD using a Hadoop OutputFormat named `SparkNewHadoopWriter`, it's similar with `SparkHadoopWriter` but uses commit protocol. This class supports the newer `mapreduce` API, instead of the old `mapred` API which is supported by `SparkHadoopWriter`;
2. Rewrite `PairRDDFunctions.saveAsNewAPIHadoopDataset` function, so it uses commit protocol now.

## How was this patch tested?
Exsiting test cases.

Author: jiangxingbo <jiangxb1987@gmail.com>

Closes #15769 from jiangxb1987/rdd-commit.
## What changes were proposed in this pull request?

The #15627 broke functionality with yarn --files --archives does not accept any files.
This patch ensures that --files and --archives accept unique files.

## How was this patch tested?

A. I added unit tests.
B. Also, manually tested --files with --archives to throw exception if duplicate files are specified and continue if unique files are specified.

Author: Kishor Patil <kpatil@yahoo-inc.com>

Closes #15810 from kishorvpatil/SPARK18357.
…lastic net

## What changes were proposed in this pull request?

* Made SingularMatrixException private ml
* WeightedLeastSquares: Changed to allow tol >= 0 instead of only tol > 0

## How was this patch tested?

existing tests

Author: Joseph K. Bradley <joseph@databricks.com>

Closes #15779 from jkbradley/wls-cleanups.
…kend.dead`

## What changes were proposed in this pull request?

"StandaloneSchedulerBackend.dead" is called in a RPC thread, so it should not call "SparkContext.stop" in the same thread. "SparkContext.stop" will block until all RPC threads exit, if it's called inside a RPC thread, it will be dead-lock.

This PR add a thread local flag inside RPC threads. `SparkContext.stop` uses it to decide if launching a new thread to stop the SparkContext.

## How was this patch tested?

Jenkins

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #15775 from zsxwing/SPARK-18280.
## What changes were proposed in this pull request?

If the rename operation in the state store fails (`fs.rename` returns `false`), the StateStore should throw an exception and have the task retry. Currently if renames fail, nothing happens during execution immediately. However, you will observe that snapshot operations will fail, and then any attempt at recovery (executor failure / checkpoint recovery) also fails.

## How was this patch tested?

Unit test

Author: Burak Yavuz <brkyvz@gmail.com>

Closes #15804 from brkyvz/rename-state.
## What changes were proposed in this pull request?

Gradient Boosted Tree in R.
With a few minor improvements to RandomForest in R.

Since this is relatively isolated I'd like to target this for branch-2.1

## How was this patch tested?

manual tests, unit tests

Author: Felix Cheung <felixcheung_m@hotmail.com>

Closes #15746 from felixcheung/rgbt.
…case insensitive resolution

## What changes were proposed in this pull request?

These are no longer needed after https://issues.apache.org/jira/browse/SPARK-17183

cc cloud-fan

## How was this patch tested?

Existing parquet and orc tests.

Author: Eric Liang <ekl@databricks.com>

Closes #15799 from ericl/sc-4929.
## What changes were proposed in this pull request?

This makes the result value both transient and lazy, so that if the RegExpReplace object is initialized then serialized, `result: StringBuffer` will be correctly initialized.

## How was this patch tested?

* Verified that this patch fixed the query that found the bug.
* Added a test case that fails without the fix.

Author: Ryan Blue <blue@apache.org>

Closes #15816 from rdblue/SPARK-18368-fix-regexp-replace.
…ABLE

### What changes were proposed in this pull request?

`Partitioned View` is not supported by SPARK SQL. For Hive partitioned view, SHOW CREATE TABLE is unable to generate the right DDL. Thus, SHOW CREATE TABLE should not support it like the other Hive-only features. This PR is to issue an exception when detecting the view is a partitioned view.
### How was this patch tested?

Added a test case

Author: gatorsmile <gatorsmile@gmail.com>

Closes #15233 from gatorsmile/partitionedView.
…ndent path for golden file generation

## What changes were proposed in this pull request?

`LogicalPlanToSQLSuite` uses the following command to update the existing answer files.

```bash
SPARK_GENERATE_GOLDEN_FILES=1 build/sbt "hive/test-only *LogicalPlanToSQLSuite"
```

However, after introducing `getTestResourcePath`, it fails to update the previous golden answer files in the predefined directory. This issue aims to fix that.

## How was this patch tested?

It's a testsuite update. Manual.

Author: Dongjoon Hyun <dongjoon@apache.org>

Closes #15789 from dongjoon-hyun/SPARK-18292.
…er Maven builds

## What changes were proposed in this pull request?

Test case initialization order under Maven and SBT are different. Maven always creates instances of all test cases and then run them all together.

This fails `ObjectHashAggregateSuite` because the randomized test cases there register a temporary Hive function right before creating a test case, and can be cleared while initializing other successive test cases. In SBT, this is fine since the created test case is executed immediately after creating the temporary function.

To fix this issue, we should put initialization/destruction code into `beforeAll()` and `afterAll()`.

## How was this patch tested?

Existing tests.

Author: Cheng Lian <lian@databricks.com>

Closes #15802 from liancheng/fix-flaky-object-hash-agg-suite.
…ON_WEB_PROXY_BASE

## What changes were proposed in this pull request?

Application links generated on the history server UI no longer (regression from 1.6) contain the configured spark.ui.proxyBase in the links. To address this, made the uiRoot available globally to all javascripts for Web UI. Updated the mustache template (historypage-template.html) to include the uiroot for rendering links to the applications.

The existing test was not sufficient to verify the scenario where ajax call is used to populate the application listing template, so added a new selenium test case to cover this scenario.

## How was this patch tested?

Existing tests and a new unit test.
No visual changes to the UI.

Author: Vinayak <vijoshi5@in.ibm.com>

Closes #15742 from vijoshi/SPARK-16808_master.
## What changes were proposed in this pull request?

This makes the result value both transient and lazy, so that if the RegExpReplace object is initialized then serialized, `result: StringBuffer` will be correctly initialized.

## How was this patch tested?

* Verified that this patch fixed the query that found the bug.
* Added a test case that fails without the fix.

Author: Ryan Blue <blue@apache.org>

Closes #15834 from rdblue/SPARK-18368-fix-regexp-replace.
…nCommand

## What changes were proposed in this pull request?
`InsertIntoHadoopFsRelationCommand` does not keep track if it inserts into a table and what table it inserts to. This can make debugging these statements problematic. This PR adds table information the `InsertIntoHadoopFsRelationCommand`. Explaining this SQL command `insert into prq select * from range(0, 100000)` now yields the following executed plan:
```
== Physical Plan ==
ExecutedCommand
   +- InsertIntoHadoopFsRelationCommand file:/dev/assembly/spark-warehouse/prq, ParquetFormat, <function1>, Map(serialization.format -> 1, path -> file:/dev/assembly/spark-warehouse/prq), Append, CatalogTable(
	Table: `default`.`prq`
	Owner: hvanhovell
	Created: Wed Nov 09 17:42:30 CET 2016
	Last Access: Thu Jan 01 01:00:00 CET 1970
	Type: MANAGED
	Schema: [StructField(id,LongType,true)]
	Provider: parquet
	Properties: [transient_lastDdlTime=1478709750]
	Storage(Location: file:/dev/assembly/spark-warehouse/prq, InputFormat: org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat, OutputFormat: org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat, Serde: org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, Properties: [serialization.format=1]))
         +- Project [id#7L]
            +- Range (0, 100000, step=1, splits=None)
```

## How was this patch tested?
Added extra checks to the `ParquetMetastoreSuite`

Author: Herman van Hovell <hvanhovell@databricks.com>

Closes #15832 from hvanhovell/SPARK-18370.
…nfigurable`.

## What changes were proposed in this pull request?

We should call `setConf` if `OutputFormat` is `Configurable`, this should be done before we create `OutputCommitter` and `RecordWriter`.
This is follow up of #15769, see discussion [here](https://github.com/apache/spark/pull/15769/files#r87064229)

## How was this patch tested?

Add test of this case in `PairRDDFunctionsSuite`.

Author: jiangxingbo <jiangxb1987@gmail.com>

Closes #15823 from jiangxb1987/config-format.
@srowen
Copy link
Member

srowen commented Nov 9, 2016

This needs a rebase before it can be retested. Also please fix the description to remove the boilerplate text.

@skanjila skanjila changed the title [SPARK-9487] [TESTS] [WIP]Use the same num. worker threads in Scala/Python unit tests [SPARK-9487] Use the same num. worker threads in Scala/Python unit tests Nov 9, 2016
@skanjila
Copy link
Author

skanjila commented Nov 9, 2016

Rebased and fixed title and committed changes, for rebase I first pulled in al the changes into my local master branch, rebased spark-9487 onto master and then committed back so it should be now good to go

Tyson Condie and others added 2 commits November 9, 2016 15:03
## What changes were proposed in this pull request?

Currently we use java serialization for the WAL that stores the offsets contained in each batch. This has two main issues:
It can break across spark releases (though this is not the only thing preventing us from upgrading a running query)
It is unnecessarily opaque to the user.
I'd propose we require offsets to provide a user readable serialization and use that instead. JSON is probably a good option.
## How was this patch tested?

Tests were added for KafkaSourceOffset in [KafkaSourceOffsetSuite](external/kafka-0-10-sql/src/test/scala/org/apache/spark/sql/kafka010/KafkaSourceOffsetSuite.scala) and for LongOffset in [OffsetSuite](sql/core/src/test/scala/org/apache/spark/sql/streaming/OffsetSuite.scala)

Please review https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark before opening a pull request.

zsxwing marmbrus

Author: Tyson Condie <tcondie@gmail.com>
Author: Tyson Condie <tcondie@clash.local>

Closes #15626 from tcondie/spark-8360.
@HyukjinKwon
Copy link
Member

HyukjinKwon commented Nov 10, 2016

@skanjila It seems something gone wrong while you are pushing more commits. Could you please rebase this?

@srowen
Copy link
Member

srowen commented Nov 10, 2016

Yeah, you may need to make a new PR to clean this up; this now has a bunch of unrelated changes. The normal procedure for rebasing is to change to your master branch, git pull upstream master, then switch to your branch and git rebase master.

@skanjila
Copy link
Author

@srowen The steps you describe is exactly what I did, except 1 part, I think I accidentally pointed my master branch to the origin of the upstream master branch which brought in all these changes, I will create a new pull request at this point and move my changes there

@srowen
Copy link
Member

srowen commented Nov 11, 2016

@skanjila please close this PR

@asfgit asfgit closed this in 330fda8 Dec 8, 2016
zifeif2 pushed a commit to zifeif2/spark that referenced this pull request Nov 22, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.