Skip to content

Releases: open-mmlab/mmpose

MMPose V0.10.0 Release

05 Jan 05:24
545738f
Compare
Choose a tag to compare

Highlights

  1. Support more human pose estimation methods.
  2. Support pose tracking.
  3. Support multi-batch inference.
  4. Add some useful tools, including analyze_logs, get_flops, print_config.
  5. Support more backbone networks.

New Features

  • Support UDP (#353, #371, #402)
  • Support multi-batch inference (#390)
  • Support MHP dataset (#386)
  • Support pose tracking demo (#380)
  • Support MPII-TRB demo (#372)
  • Support MobileNet for hand pose estimation (#377)
  • Support ResNest backbone (#370)
  • Support VGG backbone (#370)
  • Add some useful tools, including analyze_logs, get_flops, print_config (#324)

Bug Fixes

  • Fix bugs in pck evaluation (#328)
  • Fix model download links in README (#396, #397)
  • Fix CrowdPose annotations and update benchmarks (#384)
  • Fix modelzoo stat (#354, #360, #362)
  • Fix config files for AIC datasets (#340)

Breaking Changes

  • Rename image_thr to det_bbox_thr for top-down methods.

Improvements

  • Organize the readme files (#398, #399, #400)
  • Check linting for markdown (#379)
  • Add faq.md (#350)
  • Remove PyTorch 1.4 in CI (#338)
  • Add pypi badge in readme (#329)

MMPose V0.9.0 Release

30 Nov 05:30
0765325
Compare
Choose a tag to compare

Highlights

  1. Support more human pose estimation methods.
  2. Support video pose estimation datasets.
  3. Support Onnx model conversion.

New Features

  • Support MSPN (#278)
  • Support RSN (#221, #318)
  • Support new post-processing method for MSPN & RSN (#288)
  • Support sub-JHMDB dataset (#292)
  • Support urls for pre-trained models in config files (#232)
  • Support Onnx (#305)

Bug Fixes

  • Fix model download links in README (#255, #315)

Breaking Changes

  • post_process=True|False and unbiased_decoding=True|False are deprecated, use post_process=None|default|unbiased etc. instead (#288)

Improvements

MMPose V0.8.0 Release

31 Oct 15:15
6bc5557
Compare
Choose a tag to compare

Highlights

  1. Support more human pose estimation datasets.
  2. Support more 2D hand keypoint estimation datasets.
  3. Support adversarial training for 3D human shape recovery.
  4. Support multi-stage losses.
  5. Support mpii demo.

New Features

Bug Fixes

  • Fix config files (#190)

Improvements

  • Add mpii demo (#216)
  • Improve README (#181, #183, #208)
  • Support return heatmaps and backbone features (#196, #212)
  • Support different return formats of mmdetection models (#217)

MMPose V0.7.0 Release

05 Oct 05:47
808dd03
Compare
Choose a tag to compare

Highlights

  1. Support HMR for 3D human shape recovery.
  2. Support WholeBody human pose estimation.
  3. Support more 2D hand keypoint estimation datasets.
  4. Add more popular backbones & enrich the modelzoo.
    • ShuffleNetv2
  5. Support hand demo and whole-body demo.

New Features

Bug Fixes

  • Fix typos in docs (#121)
  • Fix assertion (#142)

Improvements

  • Add tools to transform .mat format to .json format (#126)
  • Add hand demo (#115)
  • Add whole-body demo (#163)
  • Reuse mmcv utility function and update version files (#135, #137)
  • Enrich the modelzoo (#147, #169)
  • Improve docs (#174, #175, #178)
  • Improve README (#176)
  • Improve version.py (#173)

MMPose V0.6.0 Release

02 Sep 17:08
c264b01
Compare
Choose a tag to compare

Highlights

  1. Add popular backbones & enrich the modelzoo.

    • ResNext
    • SEResNet
    • ResNetV1D
    • MobileNetv2
    • ShuffleNetv1
    • CPM (Convolutional Pose Machine)
  2. Add popular datasets:

  3. Support 2d hand keypoint estimation.

  4. Support bottom-up inference.

New Features

Bug Fixes

  • Fix configs for MPII & MPII-TRB datasets (#93).
  • Fix the bug of missing test_pipeline in configs (#14).
  • Fix typos (#27, #28, #50, #53, #63).

Improvements

  • Update benchmark (#93).
  • Add Dockerfile (#44).
  • Improve unittest coverage and minor fix (#18).
  • Support CPUs for train/val/demo (#34).
  • Support bottom-up demo (#69).
  • Add tools to publish model (#62).
  • Enrich the modelzoo (#64, #68, #82).